These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 985467)

  • 21. [Changes in the alkaline cation transport across the plasma membrane of CHO-K1 cell lines resistant to ethidium bromide].
    Marakhova II; Pospelova TV; Vereninov AA; Ignatova TN
    Tsitologiia; 1981 Apr; 23(4):410-8. PubMed ID: 7256844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is ouabain-sensitive rubidium or potassium uptake a measure of sodium pump activity in isolated cardiac muscle?
    Akera T; Yamamoto S; Temma K; Kim DH; Brody TM
    Biochim Biophys Acta; 1981 Feb; 640(3):779-90. PubMed ID: 6260177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of a scorpion toxin for use as a probe of the electrically excitable sodium channel.
    Linden CD; Raftery MA
    Biochem Biophys Res Commun; 1976 Sep; 72(2):646-53. PubMed ID: 985504
    [No Abstract]   [Full Text] [Related]  

  • 24. Sidedness of the effects of sodium and potassium ions on the conformational state of the sodium-potassium pump.
    Karlish SJ; Pick U
    J Physiol; 1981 Mar; 312():505-29. PubMed ID: 6267267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Occlusion of rubidium ions by the sodium-potassium pump: its implications for the mechanism of potassium transport.
    Glynn IM; Richards DE
    J Physiol; 1982 Sep; 330():17-43. PubMed ID: 6294286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles when ATP- and phosphate-free.
    Karlish SJ; Stein WD
    J Physiol; 1982 Jul; 328():295-316. PubMed ID: 6290646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ouabain-sensitive 86Rb(K) influx is linked to transepithelial Na transport in pig kidney cell line.
    Sanders MJ; Misfeldt DS
    Biochim Biophys Acta; 1982 Mar; 685(3):383-5. PubMed ID: 7066317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glucose-induced decrease in Rb+ permeability in pancreatic beta cells.
    Sehlin J; Taljedal IB
    Nature; 1975 Feb; 253(5493):635-6. PubMed ID: 1089899
    [No Abstract]   [Full Text] [Related]  

  • 29. Restoration of Na(+)-K+ pump activity and resting membrane potential by myo-inositol supplementation in neuroblastoma cells chronically exposed to glucose or galactose.
    Yorek MA; Dunlap JA; Stefani MR
    Diabetes; 1991 Feb; 40(2):240-8. PubMed ID: 1846827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship of cation influxes and effluxes in yeast.
    Rothstein A
    J Gen Physiol; 1974 Nov; 64(5):608-21. PubMed ID: 4613800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application a three compartment tracerkinetic model for comparing the K+, Rb+ and Cs+ transport of erythrocytes.
    Györgyi S; Kanyár B
    Acta Biochim Biophys Acad Sci Hung; 1972; 7(4):359-65. PubMed ID: 4671876
    [No Abstract]   [Full Text] [Related]  

  • 32. Inhibition of 86Rb+ and 22Na+ efflux of Ehrlich lettré tumor cells by Ca2+.
    Wenner C; Hackney J
    Arch Biochem Biophys; 1976 Sep; 176(1):37-42. PubMed ID: 135529
    [No Abstract]   [Full Text] [Related]  

  • 33. Ratio of Na:K transport in reconstituted sodium pump visicles.
    Anner BM
    Biochem Biophys Res Commun; 1980 Jun; 94(4):1233-41. PubMed ID: 6249304
    [No Abstract]   [Full Text] [Related]  

  • 34. Taurine transport in skate hepatocytes. II. Volume activation, energy, and sulfhydryl dependence.
    Ballatori N; Boyer JL
    Am J Physiol; 1992 Mar; 262(3 Pt 1):G451-60. PubMed ID: 1550235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature dependence of monovalent cation fluxes in isolated rat hearts: a magnetic resonance study.
    Gruwel ML; Kuzio B; Xiang B; Deslauriers R; Kupriyanov VV
    Biochim Biophys Acta; 1998 Dec; 1415(1):41-55. PubMed ID: 9858679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Transmembrane effects in the sodium pump system. I. The effect of external potassium and rubidium on the dependence of sodium efflux on sodium concentration in the frog muscle].
    Marakhova II
    Tsitologiia; 1984 Oct; 26(10):1136-44. PubMed ID: 6096993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein kinase C and membrane transport: divergent responses of Na+/K+/Cl- cotransport and sugar transport to exogenous diacylglycerol.
    O'Brien TG; George K; Prettyman R
    Biochim Biophys Acta; 1988 Nov; 945(1):41-50. PubMed ID: 3179309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cation flux in the ehrlich ascites tumor cell. Evidence for Na+-for-Na+ and K+-for-K+ exchange diffusion.
    Tupper JT
    Biochim Biophys Acta; 1975 Jul; 394(4):586-96. PubMed ID: 233946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Relation between the functional characteristics of fast sodium channels and lipid composition of neuroblastoma C1300 cells].
    Gulaia NM; Volkov GL; Lishko VK; Govseeva NN; Klimenko EP
    Ukr Biokhim Zh (1978); 1986; 58(1):44-8. PubMed ID: 2418556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Potassium transport in erythrocytes from patients with gentamicin intolerance].
    Toropova FV; Smirnov AIu; Smirnova OI; Marakhova II
    Tsitologiia; 2002; 44(12):1194-8. PubMed ID: 12683330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.