These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9855114)

  • 41. ADP ribosylation factor-like protein 2 (Arl2) regulates the interaction of tubulin-folding cofactor D with native tubulin.
    Bhamidipati A; Lewis SA; Cowan NJ
    J Cell Biol; 2000 May; 149(5):1087-96. PubMed ID: 10831612
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae.
    Maddox P; Chin E; Mallavarapu A; Yeh E; Salmon ED; Bloom K
    J Cell Biol; 1999 Mar; 144(5):977-87. PubMed ID: 10085295
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Alpha-crystallin expression affects microtubule assembly and prevents their aggregation.
    Xi JH; Bai F; McGaha R; Andley UP
    FASEB J; 2006 May; 20(7):846-57. PubMed ID: 16675842
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protection from free beta-tubulin by the beta-tubulin binding protein Rbl2p.
    Abruzzi KC; Smith A; Chen W; Solomon F
    Mol Cell Biol; 2002 Jan; 22(1):138-47. PubMed ID: 11739729
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stu2p, the budding yeast member of the conserved Dis1/XMAP215 family of microtubule-associated proteins is a plus end-binding microtubule destabilizer.
    van Breugel M; Drechsel D; Hyman A
    J Cell Biol; 2003 Apr; 161(2):359-69. PubMed ID: 12719475
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The spindle pole body component Spc97p interacts with the gamma-tubulin of Saccharomyces cerevisiae and functions in microtubule organization and spindle pole body duplication.
    Knop M; Pereira G; Geissler S; Grein K; Schiebel E
    EMBO J; 1997 Apr; 16(7):1550-64. PubMed ID: 9130700
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cell cycle-dependent changes in the dynamics of MAP 2 and MAP 4 in cultured cells.
    Olmsted JB; Stemple DL; Saxton WM; Neighbors BW; McIntosh JR
    J Cell Biol; 1989 Jul; 109(1):211-23. PubMed ID: 2745548
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of a new microtubule-interacting protein Mip-90.
    González M; Cambiazo V; Maccioni RB
    Eur J Cell Biol; 1995 Jun; 67(2):158-69. PubMed ID: 7664757
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Essential role of tubulin-folding cofactor D in microtubule assembly and its association with microtubules in fission yeast.
    Hirata D; Masuda H; Eddison M; Toda T
    EMBO J; 1998 Feb; 17(3):658-66. PubMed ID: 9450991
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure-function relationships in yeast tubulins.
    Richards KL; Anders KR; Nogales E; Schwartz K; Downing KH; Botstein D
    Mol Biol Cell; 2000 May; 11(5):1887-903. PubMed ID: 10793159
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae.
    Maddox PS; Bloom KS; Salmon ED
    Nat Cell Biol; 2000 Jan; 2(1):36-41. PubMed ID: 10620805
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The yeast spindle pole body component Spc72p interacts with Stu2p and is required for proper microtubule assembly.
    Chen XP; Yin H; Huffaker TC
    J Cell Biol; 1998 Jun; 141(5):1169-79. PubMed ID: 9606209
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast.
    Lee WL; Oberle JR; Cooper JA
    J Cell Biol; 2003 Feb; 160(3):355-64. PubMed ID: 12566428
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of tubulin levels and microtubule assembly in Saccharomyces cerevisiae: consequences of altered tubulin gene copy number.
    Katz W; Weinstein B; Solomon F
    Mol Cell Biol; 1990 Oct; 10(10):5286-94. PubMed ID: 2204811
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protein 4.1R regulates interphase microtubule organization at the centrosome.
    Pérez-Ferreiro CM; Vernos I; Correas I
    J Cell Sci; 2004 Dec; 117(Pt 25):6197-206. PubMed ID: 15564380
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulating microtubule properties by modifying their organizing minus ends.
    Usui T; Schiebel E
    Mol Cell; 2001 Nov; 8(5):931-2. PubMed ID: 11741527
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of estramustine phosphate on the assembly of trypsin-treated microtubules and microtubules reconstituted from purified tubulin with either tau, MAP2, or the tubulin-binding fragment of MAP2.
    Fridén B; Wallin M; Deinum J; Prasad V; Luduena R
    Arch Biochem Biophys; 1987 Aug; 257(1):123-30. PubMed ID: 3115177
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An alpha-tubulin mutant destabilizes the heterodimer: phenotypic consequences and interactions with tubulin-binding proteins.
    Vega LR; Fleming J; Solomon F
    Mol Biol Cell; 1998 Sep; 9(9):2349-60. PubMed ID: 9725898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microtubule disruption stimulates P-body formation.
    Sweet TJ; Boyer B; Hu W; Baker KE; Coller J
    RNA; 2007 Apr; 13(4):493-502. PubMed ID: 17307817
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fission yeast mto2p regulates microtubule nucleation by the centrosomin-related protein mto1p.
    Samejima I; Lourenço PC; Snaith HA; Sawin KE
    Mol Biol Cell; 2005 Jun; 16(6):3040-51. PubMed ID: 15659644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.