These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9855114)

  • 61. Fission yeast mto2p regulates microtubule nucleation by the centrosomin-related protein mto1p.
    Samejima I; Lourenço PC; Snaith HA; Sawin KE
    Mol Biol Cell; 2005 Jun; 16(6):3040-51. PubMed ID: 15659644
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Rbl2p, a yeast protein that binds to beta-tubulin and participates in microtubule function in vivo.
    Archer JE; Vega LR; Solomon F
    Cell; 1995 Aug; 82(3):425-34. PubMed ID: 7634332
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle.
    Gupta ML; Carvalho P; Roof DM; Pellman D
    Nat Cell Biol; 2006 Sep; 8(9):913-23. PubMed ID: 16906148
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dam1 complexes go it alone on disassembling microtubules.
    Gardner MK; Odde DJ
    Nat Cell Biol; 2008 Apr; 10(4):379-81. PubMed ID: 18379597
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A new role for kinesin-directed transport of Bik1p (CLIP-170) in Saccharomyces cerevisiae.
    Caudron F; Andrieux A; Job D; Boscheron C
    J Cell Sci; 2008 May; 121(Pt 9):1506-13. PubMed ID: 18411245
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Alf1p, a CLIP-170 domain-containing protein, is functionally and physically associated with alpha-tubulin.
    Feierbach B; Nogales E; Downing KH; Stearns T
    J Cell Biol; 1999 Jan; 144(1):113-24. PubMed ID: 9885248
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The two alpha-tubulin isotypes in budding yeast have opposing effects on microtubule dynamics in vitro.
    Bode CJ; Gupta ML; Suprenant KA; Himes RH
    EMBO Rep; 2003 Jan; 4(1):94-9. PubMed ID: 12524528
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Reassembly of flagellar B (alpha beta) tubulin into singlet microtubules: consequences for cytoplasmic microtubule structure and assembly.
    Linck RW; Langevin GL
    J Cell Biol; 1981 May; 89(2):323-37. PubMed ID: 7251656
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Saccharomyces cerevisiae PAC2 functions with CIN1, 2 and 4 in a pathway leading to normal microtubule stability.
    Hoyt MA; Macke JP; Roberts BT; Geiser JR
    Genetics; 1997 Jul; 146(3):849-57. PubMed ID: 9215891
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Suppression of a conditional mutation in alpha-tubulin by overexpression of two checkpoint genes.
    Guénette S; Magendantz M; Solomon F
    J Cell Sci; 1995 Mar; 108 ( Pt 3)():1195-204. PubMed ID: 7622604
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modeling a disease-correlated tubulin mutation in budding yeast reveals insight into MAP-mediated dynein function.
    Denarier E; Ecklund KH; Berthier G; Favier A; O'Toole ET; Gory-Fauré S; De Macedo L; Delphin C; Andrieux A; Markus SM; Boscheron C
    Mol Biol Cell; 2021 Oct; 32(20):ar10. PubMed ID: 34379441
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Unique functional characteristics of the polymerization and MAP binding regulatory domains of plant tubulin.
    Hugdahl JD; Bokros CL; Hanesworth VR; Aalund GR; Morejohn LC
    Plant Cell; 1993 Sep; 5(9):1063-80. PubMed ID: 8104575
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Measuring nanometer scale gradients in spindle microtubule dynamics using model convolution microscopy.
    Pearson CG; Gardner MK; Paliulis LV; Salmon ED; Odde DJ; Bloom K
    Mol Biol Cell; 2006 Sep; 17(9):4069-79. PubMed ID: 16807354
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An isolated CLASP TOG domain suppresses microtubule catastrophe and promotes rescue.
    Majumdar S; Kim T; Chen Z; Munyoki S; Tso SC; Brautigam CA; Rice LM
    Mol Biol Cell; 2018 Jun; 29(11):1359-1375. PubMed ID: 29851564
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Substoichiometric inhibition of microtubule formation by acetaldehyde-tubulin adducts.
    Smith SL; Jennett RB; Sorrell MF; Tuma DJ
    Biochem Pharmacol; 1992 Jul; 44(1):65-72. PubMed ID: 1632840
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Separation of active tubulin and microtubule-associated proteins by ultracentrifugation and isolation of a component causing the formation of microtubule bundles.
    Hamel E; Lin CM
    Biochemistry; 1984 Aug; 23(18):4173-84. PubMed ID: 6487596
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The TOG protein Stu2/XMAP215 interacts covalently and noncovalently with SUMO.
    Greenlee M; Alonso A; Rahman M; Meednu N; Davis K; Tabb V; Cook R; Miller RK
    Cytoskeleton (Hoboken); 2018 Jul; 75(7):290-306. PubMed ID: 29729126
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Tryprostatin A, a specific and novel inhibitor of microtubule assembly.
    Usui T; Kondoh M; Cui CB; Mayumi T; Osada H
    Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):543-8. PubMed ID: 9677311
    [TBL] [Abstract][Full Text] [Related]  

  • 79. In vivo and in vitro studies on the role of HMW-MAPs in taxol-induced microtubule bundling.
    Albertini DF; Herman B; Sherline P
    Eur J Cell Biol; 1984 Jan; 33(1):134-43. PubMed ID: 6141942
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Affinity Purification and Characterization of Functional Tubulin from Cell Suspension Cultures of Arabidopsis and Tobacco.
    Hotta T; Fujita S; Uchimura S; Noguchi M; Demura T; Muto E; Hashimoto T
    Plant Physiol; 2016 Mar; 170(3):1189-205. PubMed ID: 26747285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.