These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 9855185)
1. Growth and differentiation of human bone marrow osteoprogenitors on novel calcium phosphate cements. Oreffo RO; Driessens FC; Planell JA; Triffitt JT Biomaterials; 1998 Oct; 19(20):1845-54. PubMed ID: 9855185 [TBL] [Abstract][Full Text] [Related]
2. Effects of novel calcium phosphate cements on human bone marrow fibroblastic cells. Oreffo RO; Driessens FC; Planell JA; Triffitt JT Tissue Eng; 1998; 4(3):293-303. PubMed ID: 9836792 [TBL] [Abstract][Full Text] [Related]
3. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation. Gandolfi MG; Ciapetti G; Taddei P; Perut F; Tinti A; Cardoso MV; Van Meerbeek B; Prati C Dent Mater; 2010 Oct; 26(10):974-92. PubMed ID: 20655582 [TBL] [Abstract][Full Text] [Related]
4. The effect of alkali- and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells. Nishio K; Neo M; Akiyama H; Nishiguchi S; Kim HM; Kokubo T; Nakamura T J Biomed Mater Res; 2000 Dec; 52(4):652-61. PubMed ID: 11033547 [TBL] [Abstract][Full Text] [Related]
5. A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro. Schumacher M; Lode A; Helth A; Gelinsky M Acta Biomater; 2013 Dec; 9(12):9547-57. PubMed ID: 23917042 [TBL] [Abstract][Full Text] [Related]
6. Osteogenic potential in vitro of human bone marrow cells cultured on macroporous biphasic calcium phosphate ceramic. Toquet J; Rohanizadeh R; Guicheux J; Couillaud S; Passuti N; Daculsi G; Heymann D J Biomed Mater Res; 1999 Jan; 44(1):98-108. PubMed ID: 10397909 [TBL] [Abstract][Full Text] [Related]
7. Influence of different modifications of a calcium phosphate bone cement on adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells. Vater C; Lode A; Bernhardt A; Reinstorf A; Heinemann C; Gelinsky M J Biomed Mater Res A; 2010 Mar; 92(4):1452-60. PubMed ID: 19373921 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive biocompatibility testing of a new PMMA-hA bone cement versus conventional PMMA cement in vitro. Jäger M; Wilke A J Biomater Sci Polym Ed; 2003; 14(11):1283-98. PubMed ID: 14768914 [TBL] [Abstract][Full Text] [Related]
9. Enhanced proliferation and differentiation effects of a CGRP- and Sr-enriched calcium phosphate cement on bone mesenchymal stem cells. Liang W; Li L; Cui X; Tang Z; Wei X; Pan H; Li B J Appl Biomater Funct Mater; 2016 Nov; 14(4):e431-e440. PubMed ID: 27514494 [TBL] [Abstract][Full Text] [Related]
10. Differentiation and activity of human preosteoclasts on chitosan enriched calcium phosphate cement. Rochet N; Balaguer T; Boukhechba F; Laugier JP; Quincey D; Goncalves S; Carle GF Biomaterials; 2009 Sep; 30(26):4260-7. PubMed ID: 19481081 [TBL] [Abstract][Full Text] [Related]
11. In vitro osteoblastic differentiation of human bone marrow cells in the presence of metal ions. Morais S; Dias N; Sousa JP; Fernandes MH; Carvalho GS J Biomed Mater Res; 1999 Feb; 44(2):176-90. PubMed ID: 10397919 [TBL] [Abstract][Full Text] [Related]
12. Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering. Yang X; Tare RS; Partridge KA; Roach HI; Clarke NM; Howdle SM; Shakesheff KM; Oreffo RO J Bone Miner Res; 2003 Jan; 18(1):47-57. PubMed ID: 12510805 [TBL] [Abstract][Full Text] [Related]
13. A biomimetic gelatin-calcium phosphate bone cement. Bigi A; Torricelli P; Fini M; Bracci B; Panzavolta S; Sturba L; Giardino R Int J Artif Organs; 2004 Aug; 27(8):664-73. PubMed ID: 15478537 [TBL] [Abstract][Full Text] [Related]
14. A recombinant human TGF-beta1 fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells. Andrades JA; Han B; Becerra J; Sorgente N; Hall FL; Nimni ME Exp Cell Res; 1999 Aug; 250(2):485-98. PubMed ID: 10413602 [TBL] [Abstract][Full Text] [Related]
15. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells. Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439 [TBL] [Abstract][Full Text] [Related]
16. Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells. Lee JH; Um S; Jang JH; Seo BM Cell Tissue Res; 2012 Jun; 348(3):475-84. PubMed ID: 22437875 [TBL] [Abstract][Full Text] [Related]
17. In vitro biocompatibility of chitosan/hyaluronic acid-containing calcium phosphate bone cements. Hesaraki S; Nezafati N Bioprocess Biosyst Eng; 2014 Aug; 37(8):1507-16. PubMed ID: 24399509 [TBL] [Abstract][Full Text] [Related]
18. Bone morphogenetic protein-2 and transforming growth factor-beta2 interact to modulate human bone marrow stromal cell proliferation and differentiation. Fromigué O; Marie PJ; Lomri A J Cell Biochem; 1998 Mar; 68(4):411-26. PubMed ID: 9493905 [TBL] [Abstract][Full Text] [Related]
19. Biocompatibility of calcium phosphate bone cement with optimized mechanical properties. Palmer I; Nelson J; Schatton W; Dunne NJ; Buchanan FJ; Clarke SA J Biomed Mater Res B Appl Biomater; 2016 Feb; 104(2):308-15. PubMed ID: 25766271 [TBL] [Abstract][Full Text] [Related]
20. ToF-SIMS analysis of osteoblast-like cells and their mineralized extracellular matrix on strontium enriched bone cements. Kokesch-Himmelreich J; Schumacher M; Rohnke M; Gelinsky M; Janek J Biointerphases; 2013 Dec; 8(1):17. PubMed ID: 24706130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]