These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 9855185)
41. Ex vivo human trabecular bone model for biocompatibility evaluation of calcium phosphate composites modified with spray dried biodegradable microspheres. Schnieders J; Gbureck U; Germershaus O; Kratz M; Jones DB; Kissel T Adv Healthc Mater; 2013 Oct; 2(10):1361-9. PubMed ID: 23568426 [TBL] [Abstract][Full Text] [Related]
42. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: early fluorapatite formation in a phosphate-containing solution. Gandolfi MG; Taddei P; Siboni F; Modena E; Ginebra MP; Prati C Int Endod J; 2011 Oct; 44(10):938-49. PubMed ID: 21726240 [TBL] [Abstract][Full Text] [Related]
43. Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements. Pina S; Vieira SI; Rego P; Torres PM; da Cruz e Silva OA; da Cruz e Silva EF; Ferreira JM Eur Cell Mater; 2010 Sep; 20():162-77. PubMed ID: 20821372 [TBL] [Abstract][Full Text] [Related]
44. Effect of rapidly resorbable calcium phosphates and a calcium phosphate bone cement on the expression of bone-related genes and proteins in vitro. Knabe C; Berger G; Gildenhaar R; Meyer J; Howlett CR; Markovic B; Zreiqat H J Biomed Mater Res A; 2004 Apr; 69(1):145-54. PubMed ID: 14999762 [TBL] [Abstract][Full Text] [Related]
45. Preparation of bioactive β-tricalcium phosphate microspheres as bone graft substitute materials. Li B; Liu Z; Yang J; Yi Z; Xiao W; Liu X; Yang X; Xu W; Liao X Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1200-1205. PubMed ID: 27772722 [TBL] [Abstract][Full Text] [Related]
46. Proliferation and differentiation of osteoblasts on Biocement D modified with collagen type I and citric acid. Hempel U; Reinstorf A; Poppe M; Fischer U; Gelinsky M; Pompe W; Wenzel KW J Biomed Mater Res B Appl Biomater; 2004 Oct; 71(1):130-43. PubMed ID: 15368237 [TBL] [Abstract][Full Text] [Related]
47. Cu Schamel M; Bernhardt A; Quade M; Würkner C; Gbureck U; Moseke C; Gelinsky M; Lode A Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():99-110. PubMed ID: 28183678 [TBL] [Abstract][Full Text] [Related]
48. Effect of modified compound calcium phosphate cement on the differentiation and osteogenesis of bone mesenchymal stem cells. Zeng J; Lin J; Yao G; Kong K; Wang X J Orthop Surg Res; 2017 Jun; 12(1):102. PubMed ID: 28662665 [TBL] [Abstract][Full Text] [Related]
49. Effect of calcium phosphate cements on growth and odontoblastic differentiation in human dental pulp cells. Lee SK; Lee SK; Lee SI; Park JH; Jang JH; Kim HW; Kim EC J Endod; 2010 Sep; 36(9):1537-42. PubMed ID: 20728723 [TBL] [Abstract][Full Text] [Related]
50. Mussel-inspired bioceramics with self-assembled Ca-P/polydopamine composite nanolayer: preparation, formation mechanism, improved cellular bioactivity and osteogenic differentiation of bone marrow stromal cells. Wu C; Han P; Liu X; Xu M; Tian T; Chang J; Xiao Y Acta Biomater; 2014 Jan; 10(1):428-38. PubMed ID: 24157695 [TBL] [Abstract][Full Text] [Related]
51. The effect of different implant biomaterials on the behavior of canine bone marrow stromal cells during their differentiation into osteoblasts. Özdal-Kurt F; Tuğlu I; Vatansever HS; Tong S; Şen BH; Deliloğlu-Gürhan SI Biotech Histochem; 2016 Aug; 91(6):412-22. PubMed ID: 27182756 [TBL] [Abstract][Full Text] [Related]
52. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Sun H; Wu C; Dai K; Chang J; Tang T Biomaterials; 2006 Nov; 27(33):5651-7. PubMed ID: 16904740 [TBL] [Abstract][Full Text] [Related]
53. Functionalization of biomimetic calcium phosphate bone cements with alendronate. Panzavolta S; Torricelli P; Bracci B; Fini M; Bigi A J Inorg Biochem; 2010 Oct; 104(10):1099-106. PubMed ID: 20638728 [TBL] [Abstract][Full Text] [Related]
54. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction. Özdal-Kurt F; Tuğlu I; Vatansever HS; Tong S; Deliloğlu-Gürhan SI Biotech Histochem; 2015; 90(7):516-28. PubMed ID: 25994048 [TBL] [Abstract][Full Text] [Related]
55. Effect of soluble zinc on differentiation of osteoprogenitor cells. Popp JR; Love BJ; Goldstein AS J Biomed Mater Res A; 2007 Jun; 81(3):766-9. PubMed ID: 17377969 [TBL] [Abstract][Full Text] [Related]
56. Repair of the immature and mature craniofacial skeleton with a carbonated calcium phosphate cement: assessment of biocompatibility, osteoconductivity, and remodeling capacity. Smartt JM; Karmacharya J; Gannon FH; Ong G; Jackson O; Bartlett SP; Poser RD; Kirschner RE Plast Reconstr Surg; 2005 May; 115(6):1642-50. PubMed ID: 15861069 [TBL] [Abstract][Full Text] [Related]
57. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate. Su CC; Kao CT; Hung CJ; Chen YJ; Huang TH; Shie MY Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():156-63. PubMed ID: 24582235 [TBL] [Abstract][Full Text] [Related]
58. Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen. Brodie JC; Goldie E; Connel G; Merry J; Grant MH J Biomed Mater Res A; 2005 Jun; 73(4):409-21. PubMed ID: 15892144 [TBL] [Abstract][Full Text] [Related]
59. Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Yang XB; Roach HI; Clarke NM; Howdle SM; Quirk R; Shakesheff KM; Oreffo RO Bone; 2001 Dec; 29(6):523-31. PubMed ID: 11728922 [TBL] [Abstract][Full Text] [Related]
60. Formation of hydroxyapatite in new calcium phosphate cements. Takagi S; Chow LC; Ishikawa K Biomaterials; 1998 Sep; 19(17):1593-9. PubMed ID: 9830985 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]