These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 985622)

  • 21. Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI.
    Hains BC; Saab CY; Lo AC; Waxman SG
    Exp Neurol; 2004 Aug; 188(2):365-77. PubMed ID: 15246836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential motor and electrophysiological outcome in rats with mid-thoracic or high lumbar incomplete spinal cord injuries.
    García-Alías G; Valero-Cabré A; López-Vales R; Forés J; Verdú E; Navarro X
    Brain Res; 2006 Sep; 1108(1):195-204. PubMed ID: 16859653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methylprednisolone fails to improve functional and histological outcome following spinal cord injury in rats.
    Pereira JE; Costa LM; Cabrita AM; Couto PA; Filipe VM; Magalhães LG; Fornaro M; Di Scipio F; Geuna S; Maurício AC; Varejão AS
    Exp Neurol; 2009 Nov; 220(1):71-81. PubMed ID: 19665461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spinal cord contusion injury: experimental dissociation of hemorrhagic necrosis and subacute loss of axonal conduction.
    Anderson TE
    J Neurosurg; 1985 Jan; 62(1):115-9. PubMed ID: 3964842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Treatment of experimental spinal cord injury in ferrets.
    Eidelberg E; Staten E; Watkins CJ; Smith JS
    Surg Neurol; 1976 Oct; 6(4):243-6. PubMed ID: 968725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between residual hindlimb-assisted locomotion and surviving axons after incomplete spinal cord injuries.
    Eidelberg E; Straehley D; Erspamer R; Watkins CJ
    Exp Neurol; 1977 Aug; 56(2):312-22. PubMed ID: 885192
    [No Abstract]   [Full Text] [Related]  

  • 27. Functional MRI and other non-invasive imaging technologies: providing visual biomarkers for spinal cord structure and function after injury.
    Harel NY; Strittmatter SM
    Exp Neurol; 2008 Jun; 211(2):324-8. PubMed ID: 18396280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A controlled pneumatic technique for experimental spinal cord contusion.
    Anderson TE
    J Neurosci Methods; 1982 Nov; 6(4):327-33. PubMed ID: 7154714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comment: need for standardization of animal models of spinal cord injury.
    Faden AI
    J Neurotrauma; 1992; 9(2):169-70; discussion 170-2. PubMed ID: 1404435
    [No Abstract]   [Full Text] [Related]  

  • 30. Experimental spinal cord injury: a dynamic and verifiable injury device.
    Stokes BT
    J Neurotrauma; 1992; 9(2):129-31; discussion 131-4. PubMed ID: 1404426
    [No Abstract]   [Full Text] [Related]  

  • 31. Anatomic and behavioral outcome after spinal cord injury produced by a displacement controlled impact device.
    Beattie MS
    J Neurotrauma; 1992; 9(2):157-9; discussion 159-60. PubMed ID: 1404432
    [No Abstract]   [Full Text] [Related]  

  • 32. Problematic issues in spinal cord injury.
    Hogan EL
    J Neurotrauma; 1992; 9(2):161-2; discussion 162-3. PubMed ID: 1404433
    [No Abstract]   [Full Text] [Related]  

  • 33. Care, management, and use of ferrets in biomedical research.
    Pramod RK; Atul PK; Pandey M; Anbazhagan S; Mhaske ST; Barathidasan R
    Lab Anim Res; 2024 Mar; 40(1):10. PubMed ID: 38532510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Moving Forward: Recent Developments for the Ferret Biomedical Research Model.
    Albrecht RA; Liu WC; Sant AJ; Tompkins SM; Pekosz A; Meliopoulos V; Cherry S; Thomas PG; Schultz-Cherry S
    mBio; 2018 Jul; 9(4):. PubMed ID: 30018107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Translational spinal cord injury research: preclinical guidelines and challenges.
    Reier PJ; Lane MA; Hall ED; Teng YD; Howland DR
    Handb Clin Neurol; 2012; 109():411-33. PubMed ID: 23098728
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A model of spinal cord injury.
    Eidelberg E; Staten E; Watkins JC; McGraw D; McFadden C
    Surg Neurol; 1976 Jul; 6(1):35-8. PubMed ID: 985622
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Better functional outcome of compression spinal cord injury in mice is associated with enhanced H-reflex responses.
    Lee HJ; Jakovcevski I; Radonjic N; Hoelters L; Schachner M; Irintchev A
    Exp Neurol; 2009 Apr; 216(2):365-74. PubMed ID: 19150614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A simple, inexpensive and easily reproducible model of spinal cord injury in mice: morphological and functional assessment.
    Marques SA; Garcez VF; Del Bel EA; Martinez AM
    J Neurosci Methods; 2009 Feb; 177(1):183-93. PubMed ID: 19013194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spinal cord injury models.
    Wrathall JR
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S129-34. PubMed ID: 1588603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.