These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 9856588)

  • 1. Surface roughness of debonded straight-tapered stems in cemented THA reduces subsidence but not cement damage.
    Verdonschot N; Huiskes R
    Biomaterials; 1998 Oct; 19(19):1773-9. PubMed ID: 9856588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stem surface roughness alters creep induced subsidence and 'taper-lock' in a cemented femoral hip prosthesis.
    Norman TL; Thyagarajan G; Saligrama VC; Gruen TA; Blaha JD
    J Biomech; 2001 Oct; 34(10):1325-33. PubMed ID: 11522312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of prosthesis surface roughness on the failure process of cemented hip implants after stem-cement debonding.
    Verdonschot N; Tanck E; Huiskes R
    J Biomed Mater Res; 1998 Dec; 42(4):554-9. PubMed ID: 9827679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subsidence of THA stems due to acrylic cement creep is extremely sensitive to interface friction.
    Verdonschot N; Huiskes R
    J Biomech; 1996 Dec; 29(12):1569-75. PubMed ID: 8945655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem subsidence of polished and rough double-taper stems: in vitro mechanical effects on the cement-bone interface.
    Kaneuji A; Yamada K; Hirosaki K; Takano M; Matsumoto T
    Acta Orthop; 2009 Jun; 80(3):270-6. PubMed ID: 19421909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-vitro characteristics of cemented titanium femoral stems with a smooth surface finish.
    Akiyama H; Yamamoto K; Kaneuji A; Matsumoto T; Nakamura T
    J Orthop Sci; 2013 Jan; 18(1):29-37. PubMed ID: 22945910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone creep and short and long term subsidence after cemented stem total hip arthroplasty (THA).
    Norman TL; Shultz T; Noble G; Gruen TA; Blaha JD
    J Biomech; 2013 Mar; 46(5):949-55. PubMed ID: 23357700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid flow around model femoral components of differing surface finishes: in vitro investigations.
    Crawford RW; Evans M; Ling RS; Murray DW
    Acta Orthop Scand; 1999 Dec; 70(6):589-95. PubMed ID: 10665724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of cement thickness on stem subsidence and cement creep in a collarless polished tapered stem: When are thick cement mantles detrimental?
    Takahashi E; Kaneuji A; Tsuda R; Numata Y; Ichiseki T; Fukui K; Kawahara N
    Bone Joint Res; 2017 May; 6(5):351-357. PubMed ID: 28566327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acrylic cement creeps but does not allow much subsidence of femoral stems.
    Verdonschot N; Huiskes R
    J Bone Joint Surg Br; 1997 Jul; 79(4):665-9. PubMed ID: 9250762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial stability of cemented femoral stems as a function of surface finish, collar, and stem size.
    Ebramzadeh E; Sangiorgio SN; Longjohn DB; Buhari CF; Dorr LD
    J Bone Joint Surg Am; 2004 Jan; 86(1):106-15. PubMed ID: 14711952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro influence of stem surface finish and mantle conformity on pressure generation in cemented hip arthroplasty.
    Bartlett GE; Gill HS; Murray DW; Beard DJ
    Acta Orthop; 2009 Apr; 80(2):139-43. PubMed ID: 19404792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between cement fatigue damage and implant surface finish in proximal femoral prostheses.
    Lennon AB; McCormack BA; Prendergast PJ
    Med Eng Phys; 2003 Dec; 25(10):833-41. PubMed ID: 14630471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polished vs rough femoral components in grade A and grade C-2 cement mantles.
    Duffy GP; Lozynsky AJ; Harris WH
    J Arthroplasty; 2006 Oct; 21(7):1054-63. PubMed ID: 17027551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cement creep on stem subsidence and stresses in the cement mantle of a total hip replacement.
    Lu Z; McKellop H
    J Biomed Mater Res; 1997 Feb; 34(2):221-6. PubMed ID: 9029302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro measurement of interface micromotion and crack in cemented total hip arthroplasty systems with different surface roughness.
    Choi D; Park Y; Yoon YS; Masri BA
    Clin Biomech (Bristol); 2010 Jan; 25(1):50-5. PubMed ID: 19744754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axisymmetric finite element analysis of a debonded total hip stem with an unsupported distal tip.
    Norman TL; Saligrama VC; Hustosky KT; Gruen TA; Blaha JD
    J Biomech Eng; 1996 Aug; 118(3):399-404. PubMed ID: 8872263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of cement stresses in finite element analyses of cemented orthopaedic implants.
    Lennon AB; Prendergast PJ
    J Biomech Eng; 2001 Dec; 123(6):623-8. PubMed ID: 11783734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical aspects of degree of cement bonding and implant wedge effect.
    Yoon YS; Oxland TR; Hodgson AJ; Duncan CP; Masri BA; Choi D
    Clin Biomech (Bristol); 2008 Nov; 23(9):1141-7. PubMed ID: 18584929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between stem subsidence and improvement in the radiolucency in polished tapered stems.
    Kaneuji A; Sugimori T; Ichiseki T; Fukui K; Yamada K; Matsumoto T
    Int Orthop; 2006 Oct; 30(5):387-90. PubMed ID: 16614823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.