BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 9856767)

  • 1. Mitotic inhibition of corneal endothelium in neonatal rats.
    Joyce NC; Harris DL; Zieske JD
    Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2572-83. PubMed ID: 9856767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2.
    Joyce NC; Harris DL; Mello DM
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2152-9. PubMed ID: 12091410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of cell cycle-associated proteins in human and rabbit corneal endothelium in situ.
    Joyce NC; Navon SE; Roy S; Zieske JD
    Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1566-75. PubMed ID: 8675399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell cycle kinetics in corneal endothelium from old and young donors.
    Senoo T; Joyce NC
    Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):660-7. PubMed ID: 10711678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential activity of TGF-beta2 on the expression of p27Kip1 and Cdk4 in actively cycling and contact inhibited rabbit corneal endothelial cells.
    Kim TY; Kim WI; Smith RE; Kay EP
    Mol Vis; 2001 Nov; 7():261-70. PubMed ID: 11723444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells.
    Bayyoud T; Thaler S; Hofmann J; Maurus C; Spitzer MS; Bartz-Schmidt KU; Szurman P; Yoeruek E
    Curr Eye Res; 2012 Mar; 37(3):179-86. PubMed ID: 22335804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell cycle protein expression and proliferative status in human corneal cells.
    Joyce NC; Meklir B; Joyce SJ; Zieske JD
    Invest Ophthalmol Vis Sci; 1996 Mar; 37(4):645-55. PubMed ID: 8595965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cultivated corneal endothelial cell sheet transplantation in a primate model.
    Koizumi N; Sakamoto Y; Okumura N; Okahara N; Tsuchiya H; Torii R; Cooper LJ; Ban Y; Tanioka H; Kinoshita S
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4519-26. PubMed ID: 17898273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence suggesting the existence of stem cells for the human corneal endothelium.
    Whikehart DR; Parikh CH; Vaughn AV; Mishler K; Edelhauser HF
    Mol Vis; 2005 Sep; 11():816-24. PubMed ID: 16205623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p27kip1 siRNA induces proliferation in corneal endothelial cells from young but not older donors.
    Kikuchi M; Zhu C; Senoo T; Obara Y; Joyce NC
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):4803-9. PubMed ID: 17065491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human anterior lens capsule as carrier matrix for cultivated human corneal endothelial cells.
    Yoeruek E; Saygili O; Spitzer MS; Tatar O; Bartz-Schmidt KU; Szurman P
    Cornea; 2009 May; 28(4):416-20. PubMed ID: 19411960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of p27(KIP1) degradation by Skp2 in the regulation of proliferation in response to wounding of corneal epithelium.
    Yoshida K; Nakayama K; Nagahama H; Harada T; Harada C; Imaki J; Matsuda A; Yamamoto K; Ito M; Ohno S; Nakayama K
    Invest Ophthalmol Vis Sci; 2002 Feb; 43(2):364-70. PubMed ID: 11818378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EDTA: a promoter of proliferation in human corneal endothelium.
    Senoo T; Obara Y; Joyce NC
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2930-5. PubMed ID: 10967047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of p27(Kip1) in cAMP- and TGF-beta2-mediated antiproliferation in rabbit corneal endothelial cells.
    Kim TY; Kim WI; Smith RE; Kay ED
    Invest Ophthalmol Vis Sci; 2001 Dec; 42(13):3142-9. PubMed ID: 11726615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cdk4 and p27Kip1 play a role in PLC-gamma1-mediated mitogenic signaling pathway of 18 kDa FGF-2 in corneal endothelial cells.
    Lee HT; Kim TY; Kay EP
    Mol Vis; 2002 Feb; 8():17-25. PubMed ID: 11889462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of p27KIP1 in the proliferation of the developing corneal endothelium.
    Yoshida K; Kase S; Nakayama K; Nagahama H; Harada T; Ikeda H; Harada C; Imaki J; Ohgami K; Shiratori K; Ilieva IB; Ohno S; Nishi S; Nakayama KI
    Invest Ophthalmol Vis Sci; 2004 Jul; 45(7):2163-7. PubMed ID: 15223790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZO-1 reorganization and myofibroblast transformation of corneal endothelial cells after freeze injury in the cat.
    Petroll WM; Barry-Lane PA; Cavanagh HD; Jester JV
    Exp Eye Res; 1997 Feb; 64(2):257-67. PubMed ID: 9176060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connexin43 knockdown accelerates wound healing but inhibits mesenchymal transition after corneal endothelial injury in vivo.
    Nakano Y; Oyamada M; Dai P; Nakagami T; Kinoshita S; Takamatsu T
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):93-104. PubMed ID: 18172080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of replication in human corneal endothelial cells by E2F2 transcription factor cDNA transfer.
    McAlister JC; Joyce NC; Harris DL; Ali RR; Larkin DF
    Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3597-603. PubMed ID: 16186339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FGF-2 induced reorganization and disruption of actin cytoskeleton through PI 3-kinase, Rho, and Cdc42 in corneal endothelial cells.
    Lee HT; Kay EP
    Mol Vis; 2003 Dec; 9():624-34. PubMed ID: 14685150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.