These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 9856779)

  • 1. 3-FG as substrate for investigating flux through the polyol pathway in dog lens by 19F-NMR spectroscopy.
    Lizak MJ; Secchi EF; Lee JW; Sato S; Kubo E; Akagi Y; Kador PF
    Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2688-95. PubMed ID: 9856779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyol formation and NADPH-dependent reductases in dog retinal capillary pericytes and endothelial cells.
    Sato S; Secchi EF; Lizak MJ; Fukase S; Ohta N; Murata M; Tsai JY; Kador PF
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):697-704. PubMed ID: 10067973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-Fluoro-3-deoxy-D-galactose: a new probe for studies on sugar cataract.
    Secchi EF; Lizak MJ; Sato S; Kador PF
    Curr Eye Res; 1999 Apr; 18(4):277-82. PubMed ID: 10372987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 19F NMR quantitation of lens aldose reductase activity using 3-deoxy-3-fluoro-D-glucose.
    Karino K; Kador PF; Berkowitz B; Balaban RS
    J Biol Chem; 1991 Nov; 266(31):20970-5. PubMed ID: 1939148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sorbitol pathway in the human lens: aldose reductase and polyol dehydrogenase.
    Jedziniak JA; Chylack LT; Cheng HM; Gillis MK; Kalustian AA; Tung WH
    Invest Ophthalmol Vis Sci; 1981 Mar; 20(3):314-26. PubMed ID: 6782033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of aldose reductase activity in the eye by localized magnetic resonance spectroscopy.
    Lizak MJ; Mori K; Kador PF
    J Ocul Pharmacol Ther; 2001 Oct; 17(5):475-83. PubMed ID: 11765152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 19F and 13C NMR studies of polyol metabolism in freeze-tolerant pupae of Hyalophora cecropia.
    Podlasek CA; Serianni AS
    J Biol Chem; 1994 Jan; 269(4):2521-8. PubMed ID: 8300579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo metabolism of 3-deoxy-3-fluoro-D-glucose.
    Berkowitz BA; Moriyama T; Fales HM; Byrd RA; Balaban RS
    J Biol Chem; 1990 Jul; 265(21):12417-23. PubMed ID: 2115519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of lens aldose reductase activity by nitric oxide.
    Srivastava S; Tammali R; Chandra D; Greer DA; Ramana KV; Bhatnagar A; Srivastava SK
    Exp Eye Res; 2005 Dec; 81(6):664-72. PubMed ID: 15967436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the polyol pathway in the porcine epididymis.
    Pruneda A; Pinart E; Bonet S; Yeung CH; Cooper TG
    Mol Reprod Dev; 2006 Jul; 73(7):859-65. PubMed ID: 16596633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estradiol attenuates mitochondrial depolarization in polyol-stressed lens epithelial cells.
    Flynn JM; Cammarata PR
    Mol Vis; 2006 Apr; 12():271-82. PubMed ID: 16617294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of myo-[3H]inositol uptake by glucose and sorbitol in cultured bovine lens epithelial cells. I. Restoration of myo-inositol uptake by aldose reductase inhibition.
    Cammarata PR; Chen HQ; Yang J; Yorio T
    Invest Ophthalmol Vis Sci; 1992 Dec; 33(13):3561-71. PubMed ID: 1464502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the effects of Zopolrestat and Sorbinil on lens myo-inositol influx.
    Beyer-Mears A; Diecke FP; Mistry K; Cruz E
    Pharmacology; 1997 Feb; 54(2):76-83. PubMed ID: 9088040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of aldose reductase in sugar cataract formation: aldose reductase plays a key role in lens epithelial cell death (apoptosis).
    Murata M; Ohta N; Sakurai S; Alam S; Tsai J; Kador PF; Sato S
    Chem Biol Interact; 2001 Jan; 130-132(1-3):617-25. PubMed ID: 11306080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aldose reductase and sorbitol dehydrogenase distribution in substructures of normal and diabetic rat lens.
    Collins JG; Corder CN
    Invest Ophthalmol Vis Sci; 1977 Mar; 16(3):242-3. PubMed ID: 403152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. F-19 MR imaging of glucose metabolism in the rabbit.
    Nakada T; Kwee IL; Griffey BV; Griffey RH
    Radiology; 1988 Sep; 168(3):823-5. PubMed ID: 3136509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative importance of aldose reductase versus nonenzymatic glycosylation on sugar cataract formation in diabetic rats.
    Kador PF; Lee JW; Fujisawa S; Blessing K; Lou MF
    J Ocul Pharmacol Ther; 2000 Apr; 16(2):149-60. PubMed ID: 10803425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization and physiological implication of aldose reductase and sorbitol dehydrogenase in reproductive tracts and spermatozoa of male rats.
    Kobayashi T; Kaneko T; Iuchi Y; Matsuki S; Takahashi M; Sasagawa I; Nakada T; Fujii J
    J Androl; 2002; 23(5):674-83. PubMed ID: 12185102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of aldose reductase in naphthalene cataract.
    Lee AY; Chung SS
    Invest Ophthalmol Vis Sci; 1998 Jan; 39(1):193-7. PubMed ID: 9430562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive demonstration of in vivo 3-fluoro-3-deoxy-D-glucose metabolism in rat brain by 19F nuclear magnetic resonance spectroscopy: suitable probe for monitoring cerebral aldose reductase activities.
    Kwee IL; Nakada T; Card PJ
    J Neurochem; 1987 Aug; 49(2):428-33. PubMed ID: 3110372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.