These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 9856943)
41. An ice-free cretaceous? Results from climate model simulations. Barron EJ; Thompson SL; Schneider SH Science; 1981 May; 212(4494):501-8. PubMed ID: 17737187 [TBL] [Abstract][Full Text] [Related]
42. An active atmospheric methane sink in high Arctic mineral cryosols. Lau MC; Stackhouse BT; Layton AC; Chauhan A; Vishnivetskaya TA; Chourey K; Ronholm J; Mykytczuk NC; Bennett PC; Lamarche-Gagnon G; Burton N; Pollard WH; Omelon CR; Medvigy DM; Hettich RL; Pfiffner SM; Whyte LG; Onstott TC ISME J; 2015 Aug; 9(8):1880-91. PubMed ID: 25871932 [TBL] [Abstract][Full Text] [Related]
43. Early and Late Alkali Igneous Pulses and a High-3He Plume Origin for the Deccan Flood Basalts. Basu AR; Renne PR; Dasgupta DK; Teichmann F; Poreda RJ Science; 1993 Aug; 261(5123):902-6. PubMed ID: 17783739 [TBL] [Abstract][Full Text] [Related]
44. Isotopic evidence for glaciation during the Cretaceous supergreenhouse. Bornemann A; Norris RD; Friedrich O; Beckmann B; Schouten S; Damsté JS; Vogel J; Hofmann P; Wagner T Science; 2008 Jan; 319(5860):189-92. PubMed ID: 18187651 [TBL] [Abstract][Full Text] [Related]
45. Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Wilf P; Johnson KR; Huber BT Proc Natl Acad Sci U S A; 2003 Jan; 100(2):599-604. PubMed ID: 12524455 [TBL] [Abstract][Full Text] [Related]
46. Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Scheuhammer A; Braune B; Chan HM; Frouin H; Krey A; Letcher R; Loseto L; Noël M; Ostertag S; Ross P; Wayland M Sci Total Environ; 2015 Mar; 509-510():91-103. PubMed ID: 24935263 [TBL] [Abstract][Full Text] [Related]
47. Low-latitude seasonality of Cretaceous temperatures in warm and cold episodes. Steuber T; Rauch M; Masse JP; Graaf J; Malkoc M Nature; 2005 Oct; 437(7063):1341-4. PubMed ID: 16251961 [TBL] [Abstract][Full Text] [Related]
48. Cretaceous-paleocene terrestrial faunas of India: lack of endemism during drifting of the Indian plate. Sahni A Science; 1984 Oct; 226(4673):441-3. PubMed ID: 17799938 [TBL] [Abstract][Full Text] [Related]
49. Geobiological constraints on Earth system sensitivity to CO₂ during the Cretaceous and Cenozoic. Royer DL; Pagani M; Beerling DJ Geobiology; 2012 Jul; 10(4):298-310. PubMed ID: 22353368 [TBL] [Abstract][Full Text] [Related]
51. Variation in peak growing season net ecosystem production across the Canadian Arctic. Lafleur PM; Humphreys ER; St Louis VL; Myklebust MC; Papakyriakou T; Poissant L; Barker JD; Pilote M; Swystun KA Environ Sci Technol; 2012 Aug; 46(15):7971-7. PubMed ID: 22779925 [TBL] [Abstract][Full Text] [Related]
52. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Pearson PN; Ditchfield PW; Singano J; Harcourt-Brown KG; Nicholas CJ; Olsson RK; Shackleton NJ; Hall MA Nature; 2001 Oct; 413(6855):481-7. PubMed ID: 11586350 [TBL] [Abstract][Full Text] [Related]
55. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Otto-Bliesner BL; Marshall SJ; Overpeck JT; Miller GH; Hu A Science; 2006 Mar; 311(5768):1751-3. PubMed ID: 16556838 [TBL] [Abstract][Full Text] [Related]
56. Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm. Kim BM; Hong JY; Jun SY; Zhang X; Kwon H; Kim SJ; Kim JH; Kim SW; Kim HK Sci Rep; 2017 Jan; 7():40051. PubMed ID: 28051170 [TBL] [Abstract][Full Text] [Related]
57. True polar wander as a mechanism for second-order sea-level variations. Mound JE; Mitrovica JX Science; 1998 Jan; 279(5350):534-7. PubMed ID: 9438840 [TBL] [Abstract][Full Text] [Related]
58. Temperate rainforests near the South Pole during peak Cretaceous warmth. Klages JP; Salzmann U; Bickert T; Hillenbrand CD; Gohl K; Kuhn G; Bohaty SM; Titschack J; Müller J; Frederichs T; Bauersachs T; Ehrmann W; van de Flierdt T; Pereira PS; Larter RD; Lohmann G; Niezgodzki I; Uenzelmann-Neben G; Zundel M; Spiegel C; Mark C; Chew D; Francis JE; Nehrke G; Schwarz F; Smith JA; Freudenthal T; Esper O; Pälike H; Ronge TA; Dziadek R; Nature; 2020 Apr; 580(7801):81-86. PubMed ID: 32238944 [TBL] [Abstract][Full Text] [Related]
59. Thermophysiologies of Jurassic marine crocodylomorphs inferred from the oxygen isotope composition of their tooth apatite. Séon N; Amiot R; Martin JE; Young MT; Middleton H; Fourel F; Picot L; Valentin X; Lécuyer C Philos Trans R Soc Lond B Biol Sci; 2020 Mar; 375(1793):20190139. PubMed ID: 31928186 [TBL] [Abstract][Full Text] [Related]
60. The palaeoenvironment of the Upper Cretaceous (Cenomanian-Turonian) portion of the Winton Formation, Queensland, Australia. Fletcher TL; Moss PT; Salisbury SW PeerJ; 2018; 6():e5513. PubMed ID: 30210941 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]