BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 985701)

  • 1. A high-resolution NMR study (1H, 13C, 31P) of the interaction of paramagnetic ions with phospholipids in aqueous dispersions.
    Nolden PW; Ackermann T
    Biophys Chem; 1976 May; 4(3):297-304. PubMed ID: 985701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 31P NMR studies of unsonicated aqueous dispersions of neutral and acidic phospholipids. Effects of phase transitions, p2H and divalent cations on the motion in the phosphate region of the polar headgroup.
    Cullis PR; De Kruyff B
    Biochim Biophys Acta; 1976 Jul; 436(3):523-40. PubMed ID: 952909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of paramagnetic shift reagents on the 13C nuclear magnetic resonance spectra of egg phosphatidylcholine enriched with 13C in the N-methyl carbons.
    Sears B; Hutton WC; Thompson TE
    Biochemistry; 1976 Apr; 15(8):1635-9. PubMed ID: 178350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR studies on phospholipid bilayers. Some factors affecting lipid distribution.
    Berden JA; Barker RW; Radda GK
    Biochim Biophys Acta; 1975 Jan; 375(2):186-208. PubMed ID: 235977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of lyso 1-palmitoylphosphatidylcholine with phospholipids: a 13C and 31P NMR study.
    Bhamidipati SP; Hamilton JA
    Biochemistry; 1995 Apr; 34(16):5666-77. PubMed ID: 7727427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1H-NMR of phosphatidylcholine liposomes at low p2H in the presence of a paramagnetic shift reagent.
    Fernández MS
    Biochim Biophys Acta; 1988 Jul; 942(1):199-204. PubMed ID: 3382656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion-binding to phospholipids. Interaction of calcium and lanthanide ions with phosphatidylcholine (lecithin).
    Hauser H; Phillips MC; Levine BA; Williams RJ
    Eur J Biochem; 1975 Oct; 58(1):133-44. PubMed ID: 241630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of inorganic mercury with phospholipid micelles and model membranes. A 31P-NMR study.
    Girault L; Lemaire P; Boudou A; Debouzy JC; Dufourc EJ
    Eur Biophys J; 1996; 24(6):413-21. PubMed ID: 8765713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transbilayer distribution in small unilamellar phosphatidylglycerol-phosphatidylcholine vesicles.
    Nordlund JR; Schmidt CF; Thompson TE
    Biochemistry; 1981 Oct; 20(22):6415-20. PubMed ID: 7197988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multinuclear and magic-angle spinning NMR investigations of molecular organization in phospholipid-triglyceride aqueous dispersions.
    Li KL; Tihal CA; Guo M; Stark RE
    Biochemistry; 1993 Sep; 32(38):9926-35. PubMed ID: 8399162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 13-C NMR investigation of phospholipid membranes with the aid of shift reagents.
    Shapiro YE; Viktorov AV; Volkova VI; Barsukov LI; Bystrov VF; Bergelson LD
    Chem Phys Lipids; 1975 May; 14(3):227-32. PubMed ID: 165014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of the conformation of the polar head groups of phosphatidylcholine on its packing in bilayers. Nuclear magnetic resonance studies on the effect of the binding of lanthanide ions.
    Lichtenberg D; Amselem S; Tamir I
    Biochemistry; 1979 Sep; 18(19):4169-72. PubMed ID: 486415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphatidic acid regulates the activity of the channel-forming ionophores alamethicin, melittin, and nystatin: a 1H-NMR study using phospholipid membranes.
    Hunt GR; Jones IC; Veiro JA
    Biosci Rep; 1984 May; 4(5):403-13. PubMed ID: 6329354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A proton-relaxation enhancement study of the interaction of manganous ions with phospholipids in aqueous dispersions.
    Nolden PW; Ackermann T
    Biophys Chem; 1975 Jul; 3(3):183-91. PubMed ID: 169926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of phospholipid peroxidation on the phase behavior of phosphatidylcholine and phosphatidylethanolamine in aqueous dispersions.
    van Duijn G; Verkleij AJ; de Kruijff B
    Biochemistry; 1984 Oct; 23(21):4969-77. PubMed ID: 6498171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the inside-outside distribution, intermembrane exchange and transbilayer movement of phospholipids in sonicated vesicles by shift reagent NMR.
    Barsukov LI; Victorov AV; Vasilenko IA; Evstigneeva RP; Bergelson LD
    Biochim Biophys Acta; 1980 May; 598(1):153-68. PubMed ID: 7417424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective 31P(1H) nuclear Overhauser effect study on the polar headgroup conformation of phospholipids in micelles in organic solvents.
    Shibata T; Uzawa J; Sugiura Y
    Chem Phys Lipids; 1983 Jul; 33(1):1-10. PubMed ID: 6627521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of the phosphate group in phospholipid bilayers. A 31P-1H transient Overhauser effect study.
    Milburn MP; Jeffrey KR
    Biophys J; 1990 Jul; 58(1):187-94. PubMed ID: 2383631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical shift anisotropies obtained from aligned egg yolk phosphatidylcholine by solid-state 13C nuclear magnetic resonance.
    Braach-Maksvytis VL; Cornell BA
    Biophys J; 1988 May; 53(5):839-43. PubMed ID: 3390524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Annexin V binding to the outer leaflet of small unilamellar vesicles leads to altered inner-leaflet properties: 31P- and 1H-NMR studies.
    Swairjo MA; Roberts MF; Campos MB; Dedman JR; Seaton BA
    Biochemistry; 1994 Sep; 33(36):10944-50. PubMed ID: 8086411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.