BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9857035)

  • 1. Accurate 3' end processing and adenylation of human signal recognition particle RNA and alu RNA in vitro.
    Chen Y; Sinha K; Perumal K; Gu J; Reddy R
    J Biol Chem; 1998 Dec; 273(52):35023-31. PubMed ID: 9857035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-transcriptional adenylation of signal recognition particle RNA is carried out by an enzyme different from mRNA Poly(A) polymerase.
    Sinha K; Perumal K; Chen Y; Reddy R
    J Biol Chem; 1999 Oct; 274(43):30826-31. PubMed ID: 10521474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary conservation of post-transcriptional 3' end adenylation of small RNAs: S. cerevisiae signal recognition particle RNA and U2 small nuclear RNA are post-transcriptionally adenylated.
    Perumal K; Gu J; Reddy R
    Mol Cell Biochem; 2000 May; 208(1-2):99-109. PubMed ID: 10939633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of 3' terminal adenylic acid residue on the uridylation of human small RNAs in vitro and in frog oocytes.
    Chen Y; Sinha K; Perumal K; Reddy R
    RNA; 2000 Sep; 6(9):1277-88. PubMed ID: 10999605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification, characterization, and cloning of the cDNA of human signal recognition particle RNA 3'-adenylating enzyme.
    Perumal K; Sinha K; Henning D; Reddy R
    J Biol Chem; 2001 Jun; 276(24):21791-6. PubMed ID: 11287430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Alu domain homolog of the yeast signal recognition particle consists of an Srp14p homodimer and a yeast-specific RNA structure.
    Strub K; Fornallaz M; Bui N
    RNA; 1999 Oct; 5(10):1333-47. PubMed ID: 10573124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces SRP RNA secondary structures: a conserved S-domain and extended Alu-domain.
    Van Nues RW; Brown JD
    RNA; 2004 Jan; 10(1):75-89. PubMed ID: 14681587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of the signal recognition particle Alu RNA binding heterodimer, SRP9/14.
    Birse DE; Kapp U; Strub K; Cusack S; Aberg A
    EMBO J; 1997 Jul; 16(13):3757-66. PubMed ID: 9233785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and assembly of the Alu domain of the mammalian signal recognition particle.
    Weichenrieder O; Wild K; Strub K; Cusack S
    Nature; 2000 Nov; 408(6809):167-73. PubMed ID: 11089964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cellular protein binds B1 and Alu small cytoplasmic RNAs in vitro.
    Chang DY; Maraia RJ
    J Biol Chem; 1993 Mar; 268(9):6423-8. PubMed ID: 7681065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical assembly of the Alu domain of the mammalian signal recognition particle.
    Weichenrieder O; Stehlin C; Kapp U; Birse DE; Timmins PA; Strub K; Cusack S
    RNA; 2001 May; 7(5):731-40. PubMed ID: 11350037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The SRP9/14 subunit of the signal recognition particle (SRP) is present in more than 20-fold excess over SRP in primate cells and exists primarily free but also in complex with small cytoplasmic Alu RNAs.
    Bovia F; Fornallaz M; Leffers H; Strub K
    Mol Biol Cell; 1995 Apr; 6(4):471-84. PubMed ID: 7542942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear export of signal recognition particle RNA is a facilitated process that involves the Alu sequence domain.
    He XP; Bataillé N; Fried HM
    J Cell Sci; 1994 Apr; 107 ( Pt 4)():903-12. PubMed ID: 7520043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved tertiary base pairing ensures proper RNA folding and efficient assembly of the signal recognition particle Alu domain.
    Huck L; Scherrer A; Terzi L; Johnson AE; Bernstein HD; Cusack S; Weichenrieder O; Strub K
    Nucleic Acids Res; 2004; 32(16):4915-24. PubMed ID: 15383645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human signal recognition particle (SRP) Alu-associated protein also binds Alu interspersed repeat sequence RNAs. Characterization of human SRP9.
    Hsu K; Chang DY; Maraia RJ
    J Biol Chem; 1995 Apr; 270(17):10179-86. PubMed ID: 7730321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The SRP9/14 subunit of the human signal recognition particle binds to a variety of Alu-like RNAs and with higher affinity than its mouse homolog.
    Bovia F; Wolff N; Ryser S; Strub K
    Nucleic Acids Res; 1997 Jan; 25(2):318-26. PubMed ID: 9016560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of signal recognition particle RNA in the nucleolus of mammalian cells.
    Jacobson MR; Pederson T
    Proc Natl Acad Sci U S A; 1998 Jul; 95(14):7981-6. PubMed ID: 9653126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact.
    Siegel V; Walter P
    Nature; 1986 Mar 6-12; 320(6057):81-4. PubMed ID: 2419765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a minimal Alu RNA folding domain that specifically binds SRP9/14.
    Weichenrieder O; Kapp U; Cusack S; Strub K
    RNA; 1997 Nov; 3(11):1262-74. PubMed ID: 9409618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and comparative analysis of components from the signal recognition particle in protozoa and fungi.
    Rosenblad MA; Zwieb C; Samuelsson T
    BMC Genomics; 2004 Jan; 5(1):5. PubMed ID: 14720308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.