These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9857688)

  • 1. Advanced glycation endproducts and the kidney.
    Heidland A; Schinzel R; Sebekova K; Xiang G; Münch G; Simm A
    Przegl Lek; 1998; 55 Suppl 1():29-31. PubMed ID: 9857688
    [No Abstract]   [Full Text] [Related]  

  • 2. DNA aptamer raised against receptor for advanced glycation end products suppresses renal tubular damage and improves insulin resistance in diabetic mice.
    Sotokawauchi A; Matsui T; Higashimoto Y; Nishino Y; Koga Y; Yagi M; Yamagishi SI
    Diab Vasc Dis Res; 2021; 18(1):1479164121990533. PubMed ID: 33535822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of osthole on advanced glycation end products-induced renal tubular hypertrophy and role of klotho in its mechanism of action.
    Kan WC; Hwang JY; Chuang LY; Guh JY; Ye YL; Yang YL; Huang JS
    Phytomedicine; 2019 Feb; 53():205-212. PubMed ID: 30668400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein kinase C and protein kinase A are involved in the protection of recombinant human glucagon-like peptide-1 on glomeruli and tubules in diabetic rats.
    Yin W; Jiang Y; Xu S; Wang Z; Peng L; Fang Q; Deng T; Zhao W; Zhang W; Lou J
    J Diabetes Investig; 2019 May; 10(3):613-625. PubMed ID: 30307132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of advanced glycation endproducts in the kidney of experimental diabetic rats.
    Shikata K; Makino H; Sugimoto H; Kushiro M; Ota K; Akiyama K; Araki N; Horiuchi S; Ota Z
    J Diabetes Complications; 1995; 9(4):269-71. PubMed ID: 8573744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbonyl stress in the pathogenesis of diabetic nephropathy.
    Suzuki D; Miyata T
    Intern Med; 1999 Apr; 38(4):309-14. PubMed ID: 10361902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemistry and pathobiology of advanced glycation end products.
    Schleicher ED; Bierhaus A; Häring HU; Nawroth PP; Lehmann R
    Contrib Nephrol; 2001; (131):1-9. PubMed ID: 11125554
    [No Abstract]   [Full Text] [Related]  

  • 8. Salvianolic Acid A Protects Against Diabetic Nephropathy through Ameliorating Glomerular Endothelial Dysfunction via Inhibiting AGE-RAGE Signaling.
    Hou B; Qiang G; Zhao Y; Yang X; Chen X; Yan Y; Wang X; Liu C; Zhang L; Du G
    Cell Physiol Biochem; 2017; 44(6):2378-2394. PubMed ID: 29262395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbonyl stress.
    Suzuki D; Miyata T; Kurokawa K
    Contrib Nephrol; 2001; (134):36-45. PubMed ID: 11665286
    [No Abstract]   [Full Text] [Related]  

  • 10. Glucose, glycation, and RAGE: implications for amplification of cellular dysfunction in diabetic nephropathy.
    Wendt T; Tanji N; Guo J; Hudson BI; Bierhaus A; Ramasamy R; Arnold B; Nawroth PP; Yan SF; D'Agati V; Schmidt AM
    J Am Soc Nephrol; 2003 May; 14(5):1383-95. PubMed ID: 12707408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diabetic nephropathy and advanced glycation end products.
    Menè P; Festuccia F; Polci R; Pugliese F; Cinotti GA
    Contrib Nephrol; 2001; (131):22-32. PubMed ID: 11125560
    [No Abstract]   [Full Text] [Related]  

  • 12. Autophagy-Lysosome Pathway in Renal Tubular Epithelial Cells Is Disrupted by Advanced Glycation End Products in Diabetic Nephropathy.
    Liu WJ; Shen TT; Chen RH; Wu HL; Wang YJ; Deng JK; Chen QH; Pan Q; Huang Fu CM; Tao JL; Liang D; Liu HF
    J Biol Chem; 2015 Aug; 290(33):20499-510. PubMed ID: 26100632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glyceraldehyde-Derived Pyridinium Evokes Renal Tubular Cell Damage via RAGE Interaction.
    Sotokawauchi A; Nakamura N; Matsui T; Higashimoto Y; Yamagishi SI
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32283652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel inhibitors of glycation and AGE formation.
    Rahbar S
    Cell Biochem Biophys; 2007; 48(2-3):147-57. PubMed ID: 17709884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The receptor for advanced glycation endproducts mediates podocyte heparanase expression through NF-κB signaling pathway.
    An X; Zhang L; Yao Q; Li L; Wang B; Zhang J; He M; Zhang J
    Mol Cell Endocrinol; 2018 Jul; 470():14-25. PubMed ID: 28478303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteomeles schwerinae extracts inhibits the binding to receptors of advanced glycation end products and TGF-β1 expression in mesangial cells under diabetic conditions.
    Kim YS; Jung DH; Lee IS; Pyun BJ; Kim JS
    Phytomedicine; 2016 Apr; 23(4):388-97. PubMed ID: 27002409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between the expression of advanced glycation end-products (AGE) and the receptor for AGE (RAGE) mRNA in diabetic nephropathy.
    Suzuki D; Toyoda M; Yamamoto N; Miyauchi M; Katoh M; Kimura M; Maruyama M; Honma M; Umezono T; Yagame M
    Intern Med; 2006; 45(7):435-41. PubMed ID: 16679697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diabetic kidney disease: a role for advanced glycation end-product receptor 1 (AGE-R1)?
    Zhuang A; Forbes JM
    Glycoconj J; 2016 Aug; 33(4):645-52. PubMed ID: 27270766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confirming the causal role of advanced glycation end‑products in arterial stiffening.
    Yalçinkaya E; Celik M
    Pol Arch Med Wewn; 2014; 124(3):148. PubMed ID: 24463651
    [No Abstract]   [Full Text] [Related]  

  • 20. Eucalyptol Inhibits Advanced Glycation End Products-Induced Disruption of Podocyte Slit Junctions by Suppressing Rage-Erk-C-Myc Signaling Pathway.
    Kim DY; Kang MK; Lee EJ; Kim YH; Oh H; Kang YH
    Mol Nutr Food Res; 2018 Oct; 62(19):e1800302. PubMed ID: 29987888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.