These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 9858128)

  • 1. Human red cells from prenatal hemopoiesis. Sodium/lithium exchange symmetry.
    Mújica G; Taborda D; Corchs JL; Serrani RE
    J Physiol Biochem; 1998 Jun; 54(2):85-90. PubMed ID: 9858128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human red blood cells from prenatal hemopoiesis. Lithium flux (sodium dependent) asymmetry.
    Corchs JL; Taborda D; Serrani RE
    Biocell; 2000 Dec; 24(3):233-7. PubMed ID: 11201659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human red cells from prenatal stages of hemopoiesis. Lithium flux components.
    Corchs JL; Mujica G; Serrani RE
    Rev Esp Fisiol; 1996 Jun; 52(2):77-82. PubMed ID: 8870104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium transport pathways in human, chicken and eel erythrocytes.
    Romano L; Battaglia M; Cordì R; Rinaldi C; Leucci S; Amato A
    Biochem Biophys Res Commun; 1995 May; 210(1):119-25. PubMed ID: 7741730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neonatal red blood cells: amiloride-insensitive Na+-H+ transport isoform would express Na+-Li+ exchange.
    Serrani RE; Mujica G; Gioia IA; Corchs JL
    Acta Physiol Pharmacol Bulg; 2000; 25(3-4):71-4. PubMed ID: 11688549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human red cells from pre (hepato splenic-late fetal) and postnatal (bone marrow-adult's) stages of haemopoiesis: Na+/Li+ exchange kinetic.
    Taborda D; Serrani RE; Corchs JL
    Arch Physiol Biochem; 1998 Apr; 106(2):81-7. PubMed ID: 9894863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+/Li+ exchange kinetic characterization. Red blood cells from normotensive individuals.
    Corchs JL; Taborda D; Mujica G; Serrani RE
    Acta Physiol Pharmacol Bulg; 2000; 25(3-4):75-9. PubMed ID: 11688550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythrocyte cation content and sodium transport in Siberian huskies.
    Wilson O; Dixon E
    Am J Vet Res; 1991 Sep; 52(9):1427-32. PubMed ID: 1952327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of lithium across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
    Gusev GP; Agalakova NI; Ivanova TI
    Gen Physiol Biophys; 2008 Dec; 27(4):284-90. PubMed ID: 19202202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amiloride-sensitive sodium transport in lamprey red blood cells: evidence for two distinct transport pathways.
    Gusev GP; Ivanova TI
    Gen Physiol Biophys; 2004 Dec; 23(4):443-56. PubMed ID: 15815079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of gamma radiation on Li+ transport through human erythrocyte membranes.
    Bindea C; Morariu VV; Chereji I
    Cytobios; 1998; 93(372):23-31. PubMed ID: 9721634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adolescent erythrocytes: influence of high density lipoproteins-cholesterol (HDL-c) plasmatic levels on Na+/Li+ exchange kinetics.
    Serrani R; Taborda D; DeMaria I; Corchs J
    Acta Physiol Pharmacol Bulg; 2003; 27(2-3):39-42. PubMed ID: 14570145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red blood cells Li+-Na+ exchange kinetics. Normal adolescents with hypertensive ancestors.
    Corchs JL; Taborda D; Serrani RE
    Acta Physiol Pharmacol Bulg; 2000; 25(3-4):81-5. PubMed ID: 11688551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cholesterol and dipalmitoyl phosphatidylcholine enrichment on the kinetics of Na-Li exchange of human erythrocytes.
    Engelmann B; Duhm J
    J Membr Biol; 1991 Jun; 122(3):231-8. PubMed ID: 1920387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Export of Na+ from cells of the halotolerant microalga Dunaliella maritima: Na+/H+ antiporter or primary Na+-pump?
    Shumkova GA; Popova LG; Balnokin YV
    Biochemistry (Mosc); 2000 Aug; 65(8):917-23. PubMed ID: 11002184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for tryptophan residues in the cation transport path of the Na(+),K(+)-ATPase.
    Yudowski GA; Bar Shimon M; Tal DM; González-Lebrero RM; Rossi RC; Garrahan PJ; Beaugé LA; Karlish SJ
    Biochemistry; 2003 Sep; 42(34):10212-22. PubMed ID: 12939149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Pharmacokinetics and toxicology of lithium].
    Greil W
    Bibl Psychiatr; 1981; (161):69-103. PubMed ID: 6268059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium/hydrogen exchange activity in type 1 diabetes mellitus: the never-ending story.
    Matteucci E; Giampietro O
    Diabetes Nutr Metab; 2001 Aug; 14(4):225-33. PubMed ID: 11716294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impairment of sodium pump and Na/H exchanger in erythrocytes from non-insulin dependent diabetes mellitus patients: effect of tea catechins.
    Rizvi SI; Zaid MA
    Clin Chim Acta; 2005 Apr; 354(1-2):59-67. PubMed ID: 15748600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium and ATP affinities of the cardiac Na(+),K(+)-ATPase in spontaneously hypertensive rats.
    Vrbjar N; Wachalová K; Sipola M; Vapaatalo H
    Gen Physiol Biophys; 2002 Sep; 21(3):303-13. PubMed ID: 12537353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.