BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 9858256)

  • 1. Rac1-dependent actin filament organization in growth cones is necessary for beta1-integrin-mediated advance but not for growth on poly-D-lysine.
    Kuhn TB; Brown MD; Bamburg JR
    J Neurobiol; 1998 Dec; 37(4):524-40. PubMed ID: 9858256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myelin and collapsin-1 induce motor neuron growth cone collapse through different pathways: inhibition of collapse by opposing mutants of rac1.
    Kuhn TB; Brown MD; Wilcox CL; Raper JA; Bamburg JR
    J Neurosci; 1999 Mar; 19(6):1965-75. PubMed ID: 10066250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cdc42 stimulates neurite outgrowth and formation of growth cone filopodia and lamellipodia.
    Brown MD; Cornejo BJ; Kuhn TB; Bamburg JR
    J Neurobiol; 2000 Jun; 43(4):352-64. PubMed ID: 10861561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubule and Rac 1-dependent F-actin in growth cones.
    Grabham PW; Reznik B; Goldberg DJ
    J Cell Sci; 2003 Sep; 116(Pt 18):3739-48. PubMed ID: 12890754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRET imaging in nerve growth cones reveals a high level of RhoA activity within the peripheral domain.
    Nakamura T; Aoki K; Matsuda M
    Brain Res Mol Brain Res; 2005 Oct; 139(2):277-87. PubMed ID: 16024133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attenuation of actinomyosinII contractile activity in growth cones accelerates filopodia-guided and microtubule-based neurite elongation.
    Rösner H; Möller W; Wassermann T; Mihatsch J; Blum M
    Brain Res; 2007 Oct; 1176():1-10. PubMed ID: 17888886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rac1 mediates collapsin-1-induced growth cone collapse.
    Jin Z; Strittmatter SM
    J Neurosci; 1997 Aug; 17(16):6256-63. PubMed ID: 9236236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nerve growth factor stimulates coupling of beta1 integrin to distinct transport mechanisms in the filopodia of growth cones.
    Grabham PW; Foley M; Umeojiako A; Goldberg DJ
    J Cell Sci; 2000 Sep; 113 ( Pt 17)():3003-12. PubMed ID: 10934039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Labeling F-actin barbed ends with rhodamine-actin in permeabilized neuronal growth cones.
    Marsick BM; Letourneau PC
    J Vis Exp; 2011 Mar; (49):. PubMed ID: 21445046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibronectin and laminin elicit differential behaviors from SH-SY5Y growth cones contacting inhibitory chondroitin sulfate proteoglycans.
    Hynds DL; Snow DM
    J Neurosci Res; 2001 Nov; 66(4):630-42. PubMed ID: 11746383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two distinct filopodia populations at the growth cone allow to sense nanotopographical extracellular matrix cues to guide neurite outgrowth.
    Jang KJ; Kim MS; Feltrin D; Jeon NL; Suh KY; Pertz O
    PLoS One; 2010 Dec; 5(12):e15966. PubMed ID: 21209862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth cone behavior in the presence of soluble chondroitin sulfate proteoglycan (CSPG), compared to behavior on CSPG bound to laminin or fibronectin.
    Snow DM; Brown EM; Letourneau PC
    Int J Dev Neurosci; 1996 Jun; 14(3):331-49. PubMed ID: 8842808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct functions of Rac1 and Cdc42 during axon guidance and growth cone morphogenesis in Drosophila.
    Matsuura R; Tanaka H; Go MJ
    Eur J Neurosci; 2004 Jan; 19(1):21-31. PubMed ID: 14750960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid.
    Kozma R; Sarner S; Ahmed S; Lim L
    Mol Cell Biol; 1997 Mar; 17(3):1201-11. PubMed ID: 9032247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S; Kalil K
    J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulating actin dynamics in neuronal growth cones by ADF/cofilin and rho family GTPases.
    Kuhn TB; Meberg PJ; Brown MD; Bernstein BW; Minamide LS; Jensen JR; Okada K; Soda EA; Bamburg JR
    J Neurobiol; 2000 Aug; 44(2):126-44. PubMed ID: 10934317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages.
    Allen WE; Jones GE; Pollard JW; Ridley AJ
    J Cell Sci; 1997 Mar; 110 ( Pt 6)():707-20. PubMed ID: 9099945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Human Rho-GEF trio and its target GTPase RhoG are involved in the NGF pathway, leading to neurite outgrowth.
    Estrach S; Schmidt S; Diriong S; Penna A; Blangy A; Fort P; Debant A
    Curr Biol; 2002 Feb; 12(4):307-12. PubMed ID: 11864571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-muscle myosin II regulates neuronal actin dynamics by interacting with guanine nucleotide exchange factors.
    Shin EY; Lee CS; Yun CY; Won SY; Kim HK; Lee YH; Kwak SJ; Kim EG
    PLoS One; 2014; 9(4):e95212. PubMed ID: 24752242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid growth cone translocation on laminin is supported by lamellipodial not filopodial structures.
    Kleitman N; Johnson MI
    Cell Motil Cytoskeleton; 1989; 13(4):288-300. PubMed ID: 2776225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.