BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 9858572)

  • 21. Genomic evolution of the long terminal repeat retrotransposons in hemiascomycetous yeasts.
    Neuvéglise C; Feldmann H; Bon E; Gaillardin C; Casaregola S
    Genome Res; 2002 Jun; 12(6):930-43. PubMed ID: 12045146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tca5, a Ty5-like retrotransposon from Candida albicans.
    Plant EP; Goodwin TJ; Poulter RT
    Yeast; 2000 Dec; 16(16):1509-18. PubMed ID: 11113973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extrachromosomal telomeric circles contribute to Rad52-, Rad50-, and polymerase delta-mediated telomere-telomere recombination in Saccharomyces cerevisiae.
    Lin CY; Chang HH; Wu KJ; Tseng SF; Lin CC; Lin CP; Teng SC
    Eukaryot Cell; 2005 Feb; 4(2):327-36. PubMed ID: 15701795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates.
    Bärtsch S; Kang LE; Symington LS
    Mol Cell Biol; 2000 Feb; 20(4):1194-205. PubMed ID: 10648605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence.
    Kim JM; Vanguri S; Boeke JD; Gabriel A; Voytas DF
    Genome Res; 1998 May; 8(5):464-78. PubMed ID: 9582191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light and shadow on the mechanisms of integration site selection in yeast Ty retrotransposon families.
    Bonnet A; Lesage P
    Curr Genet; 2021 Jun; 67(3):347-357. PubMed ID: 33590295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ty5 gag mutations increase retrotransposition and suggest a role for hydrogen bonding in the function of the nucleocapsid zinc finger.
    Gao X; Rowley DJ; Gai X; Voytas DF
    J Virol; 2002 Apr; 76(7):3240-7. PubMed ID: 11884548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A small targeting domain in Ty1 integrase is sufficient to direct retrotransposon integration upstream of tRNA genes.
    Asif-Laidin A; Conesa C; Bonnet A; Grison C; Adhya I; Menouni R; Fayol H; Palmic N; Acker J; Lesage P
    EMBO J; 2020 Sep; 39(17):e104337. PubMed ID: 32677087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The yeast retrotransposon Ty5 uses the anticodon stem-loop of the initiator methionine tRNA as a primer for reverse transcription.
    Ke N; Gao X; Keeney JB; Boeke JD; Voytas DF
    RNA; 1999 Jul; 5(7):929-38. PubMed ID: 10411136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Ty1 LTR-Retrotransposon of Budding Yeast, Saccharomyces cerevisiae.
    Curcio MJ; Lutz S; Lesage P
    Microbiol Spectr; 2015 Apr; 3(2):MDNA3-0053-2014. PubMed ID: 26104690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A mutation in the gene encoding the Saccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 stimulates a RAD52-independent pathway for direct-repeat recombination.
    Smith J; Rothstein R
    Mol Cell Biol; 1995 Mar; 15(3):1632-41. PubMed ID: 7862154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52.
    Firmenich AA; Elias-Arnanz M; Berg P
    Mol Cell Biol; 1995 Mar; 15(3):1620-31. PubMed ID: 7862153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Qualitative and Quantitative Assays of Transposition and Homologous Recombination of the Retrotransposon Tf1 in Schizosaccharomyces pombe.
    Sangesland M; Atwood-Moore A; Rai SK; Levin HL
    Methods Mol Biol; 2016; 1400():117-30. PubMed ID: 26895050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of Extrachromosomal Circular DNA from Long Terminal Repeats of Retrotransposons in Saccharomyces cerevisiae.
    Møller HD; Larsen CE; Parsons L; Hansen AJ; Regenberg B; Mourier T
    G3 (Bethesda); 2015 Dec; 6(2):453-62. PubMed ID: 26681518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rrm3 protects the Saccharomyces cerevisiae genome from instability at nascent sites of retrotransposition.
    Stamenova R; Maxwell PH; Kenny AE; Curcio MJ
    Genetics; 2009 Jul; 182(3):711-23. PubMed ID: 19414561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Sgs1 helicase of Saccharomyces cerevisiae inhibits retrotransposition of Ty1 multimeric arrays.
    Bryk M; Banerjee M; Conte D; Curcio MJ
    Mol Cell Biol; 2001 Aug; 21(16):5374-88. PubMed ID: 11463820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retrotransposon target site selection by imitation of a cellular protein.
    Brady TL; Fuerst PG; Dick RA; Schmidt C; Voytas DF
    Mol Cell Biol; 2008 Feb; 28(4):1230-9. PubMed ID: 18086891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation of a LTR-retrotransposon by telomere erosion.
    Scholes DT; Kenny AE; Gamache ER; Mou Z; Curcio MJ
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15736-41. PubMed ID: 14673098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae.
    Mezard C; Nicolas A
    Mol Cell Biol; 1994 Feb; 14(2):1278-92. PubMed ID: 8289807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tempo and mode of Ty element evolution in Saccharomyces cerevisiae.
    Jordan IK; McDonald JF
    Genetics; 1999 Apr; 151(4):1341-51. PubMed ID: 10101161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.