These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 9858686)
1. Requirement for EphA receptor signaling in the segregation of Xenopus third and fourth arch neural crest cells. Helbling PM; Tran CT; Brändli AW Mech Dev; 1998 Nov; 78(1-2):63-79. PubMed ID: 9858686 [TBL] [Abstract][Full Text] [Related]
2. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Smith A; Robinson V; Patel K; Wilkinson DG Curr Biol; 1997 Aug; 7(8):561-70. PubMed ID: 9259557 [TBL] [Abstract][Full Text] [Related]
3. Molecular cloning of tyrosine kinases in the early Xenopus embryo: identification of Eck-related genes expressed in cranial neural crest cells of the second (hyoid) arch. Brändli AW; Kirschner MW Dev Dyn; 1995 Jun; 203(2):119-40. PubMed ID: 7655077 [TBL] [Abstract][Full Text] [Related]
4. Pagliaccio, a member of the Eph family of receptor tyrosine kinase genes, has localized expression in a subset of neural crest and neural tissues in Xenopus laevis embryos. Winning RS; Sargent TD Mech Dev; 1994 Jun; 46(3):219-29. PubMed ID: 7918105 [TBL] [Abstract][Full Text] [Related]
5. Molecular cloning, expression and partial characterization of Xksy, Xenopus member of the Sky family of receptor tyrosine kinases. Kishi YA; Funakoshi H; Matsumoto K; Nakamura T Gene; 2002 Apr; 288(1-2):29-40. PubMed ID: 12034491 [TBL] [Abstract][Full Text] [Related]
6. Characterization of a Xenopus laevis CXC chemokine receptor 4: implications for hematopoietic cell development in the vertebrate embryo. Moepps B; Braun M; Knöpfle K; Dillinger K; Knöchel W; Gierschik P Eur J Immunol; 2000 Oct; 30(10):2924-34. PubMed ID: 11069075 [TBL] [Abstract][Full Text] [Related]
7. Comparative analysis of embryonic gene expression defines potential interaction sites for Xenopus EphB4 receptors with ephrin-B ligands. Helbling PM; Saulnier DM; Robinson V; Christiansen JH; Wilkinson DG; Brändli AW Dev Dyn; 1999 Dec; 216(4-5):361-73. PubMed ID: 10633856 [TBL] [Abstract][Full Text] [Related]
8. Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos. Pegoraro C; Monsoro-Burq AH Wiley Interdiscip Rev Dev Biol; 2013; 2(2):247-59. PubMed ID: 24009035 [TBL] [Abstract][Full Text] [Related]
9. Xenopus Zic family and its role in neural and neural crest development. Nakata K; Nagai T; Aruga J; Mikoshiba K Mech Dev; 1998 Jul; 75(1-2):43-51. PubMed ID: 9739105 [TBL] [Abstract][Full Text] [Related]
10. ADAM 13: a novel ADAM expressed in somitic mesoderm and neural crest cells during Xenopus laevis development. Alfandari D; Wolfsberg TG; White JM; DeSimone DW Dev Biol; 1997 Feb; 182(2):314-30. PubMed ID: 9070330 [TBL] [Abstract][Full Text] [Related]
11. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Tribulo C; Aybar MJ; Nguyen VH; Mullins MC; Mayor R Development; 2003 Dec; 130(26):6441-52. PubMed ID: 14627721 [TBL] [Abstract][Full Text] [Related]
12. Serotonin 2B receptor signaling is required for craniofacial morphogenesis and jaw joint formation in Xenopus. Reisoli E; De Lucchini S; Nardi I; Ori M Development; 2010 Sep; 137(17):2927-37. PubMed ID: 20667918 [TBL] [Abstract][Full Text] [Related]
13. Integrin alpha5beta1 supports the migration of Xenopus cranial neural crest on fibronectin. Alfandari D; Cousin H; Gaultier A; Hoffstrom BG; DeSimone DW Dev Biol; 2003 Aug; 260(2):449-64. PubMed ID: 12921745 [TBL] [Abstract][Full Text] [Related]
14. Neural crest-specific and general expression of distinct metalloprotease-disintegrins in early Xenopus laevis development. Cai H; Krätzschmar J; Alfandari D; Hunnicutt G; Blobel CP Dev Biol; 1998 Dec; 204(2):508-24. PubMed ID: 9882486 [TBL] [Abstract][Full Text] [Related]
15. Localization of PDGF A and PDGFR alpha mRNA in Xenopus embryos suggests signalling from neural ectoderm and pharyngeal endoderm to neural crest cells. Ho L; Symes K; Yordán C; Gudas LJ; Mercola M Mech Dev; 1994 Dec; 48(3):165-74. PubMed ID: 7893600 [TBL] [Abstract][Full Text] [Related]
16. Combined intrinsic and extrinsic influences pattern cranial neural crest migration and pharyngeal arch morphogenesis in axolotl. Cerny R; Meulemans D; Berger J; Wilsch-Bräuninger M; Kurth T; Bronner-Fraser M; Epperlein HH Dev Biol; 2004 Feb; 266(2):252-69. PubMed ID: 14738875 [TBL] [Abstract][Full Text] [Related]
17. Xenopus cadherin-11 is expressed in different populations of migrating neural crest cells. Vallin J; Girault JM; Thiery JP; Broders F Mech Dev; 1998 Jul; 75(1-2):171-4. PubMed ID: 9739138 [TBL] [Abstract][Full Text] [Related]
18. Expression and function of Xenopus laevis p75(NTR) suggest evolution of developmental regulatory mechanisms. Hutson LD; Bothwell M J Neurobiol; 2001 Nov; 49(2):79-98. PubMed ID: 11598917 [TBL] [Abstract][Full Text] [Related]
19. PCNS: a novel protocadherin required for cranial neural crest migration and somite morphogenesis in Xenopus. Rangarajan J; Luo T; Sargent TD Dev Biol; 2006 Jul; 295(1):206-18. PubMed ID: 16674935 [TBL] [Abstract][Full Text] [Related]