BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9858803)

  • 1. Diurnal and nocturnal visual capabilities in shorebirds as a function of their feeding strategies.
    Rojas LM; McNeil R; Cabana T; Lachapelle P
    Brain Behav Evol; 1999; 53(1):29-43. PubMed ID: 9858803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral, morphological and physiological correlates of diurnal and nocturnal vision in selected wading bird species.
    Rojas LM; McNeil R; Cabana T; Lachapelle P
    Brain Behav Evol; 1999; 53(5-6):227-42. PubMed ID: 10473901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal morphology and electrophysiology of two caprimulgiformes birds: the cave-living and nocturnal oilbird (Steatornis caripensis), and the crepuscularly and nocturnally foraging common pauraque (Nyctidromus albicollis).
    Rojas LM; Ramírez Y; McNeil R; Mitchell M; Marín G
    Brain Behav Evol; 2004; 64(1):19-33. PubMed ID: 15051964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vision and touch in relation to foraging and predator detection: insightful contrasts between a plover and a sandpiper.
    Martin GR; Piersma T
    Proc Biol Sci; 2009 Feb; 276(1656):437-45. PubMed ID: 18842546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the retinal structure and function in four bird species as a function of the time they start singing in the morning.
    McNeil R; McSween A; Lachapelle P
    Brain Behav Evol; 2005; 65(3):202-14. PubMed ID: 15703474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of priority shorebird conservation areas in the Caribbean.
    Cañizares JR; Reed JM
    PeerJ; 2020; 8():e9831. PubMed ID: 33194350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diurnal variation in the b-wave implicit time of the human electroretinogram.
    Hankins MW; Jones RJ; Ruddock KH
    Vis Neurosci; 1998; 15(1):55-67. PubMed ID: 9456505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A distinctive form of congenital stationary night blindness with cone ON-pathway dysfunction.
    Barnes CS; Alexander KR; Fishman GA
    Ophthalmology; 2002 Mar; 109(3):575-83. PubMed ID: 11874764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative visual function in elasmobranchs: spatial arrangement and ecological correlates of photoreceptor and ganglion cell distributions.
    Litherland L; Collin SP
    Vis Neurosci; 2008; 25(4):549-61. PubMed ID: 18606042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice.
    Allen AE; Lucas RJ
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):276-87. PubMed ID: 26818794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing the retinal structures and functions in two species of gulls (Larus delawarensis and Larus modestus) with significant nocturnal behaviours.
    Emond MP; McNeil R; Cabana T; Guerra CG; Lachapelle P
    Vision Res; 2006 Sep; 46(18):2914-25. PubMed ID: 16647740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ERG Responses in Mice with Deletion of the Synaptic Ribbon Component RIBEYE.
    Fairless R; Williams SK; Katiyar R; Maxeiner S; Schmitz F; Diem R
    Invest Ophthalmol Vis Sci; 2020 May; 61(5):37. PubMed ID: 32437548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rod- and cone-isolated flicker electroretinograms and their response summation characteristics.
    McAnany JJ; Park JC; Cao D
    Vis Neurosci; 2015 Jan; 32():E018. PubMed ID: 26241372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rods Contribute to Visual Behavior in Larval Zebrafish.
    Venkatraman P; Mills-Henry I; Padmanabhan KR; Pascuzzi P; Hassan M; Zhang J; Zhang X; Ma P; Pang CP; Dowling JE; Zhang M; Leung YF
    Invest Ophthalmol Vis Sci; 2020 Oct; 61(12):11. PubMed ID: 33049059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-color pupillometry in enhanced S-cone syndrome caused by NR2E3 mutations.
    Collison FT; Park JC; Fishman GA; Stone EM; McAnany JJ
    Doc Ophthalmol; 2016 Jun; 132(3):157-66. PubMed ID: 27033713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird.
    Dwyer RG; Bearhop S; Campbell HA; Bryant DM
    J Anim Ecol; 2013 Mar; 82(2):478-85. PubMed ID: 23190422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The d-wave of the rod electroretinogram of rat originates in the cone pathway.
    Naarendorp F; Williams GE
    Vis Neurosci; 1999; 16(1):91-105. PubMed ID: 10022481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative visual function in predatory fishes from the Indian River Lagoon.
    McComb DM; Kajiura SM; Horodysky AZ; Frank TM
    Physiol Biochem Zool; 2013; 86(3):285-97. PubMed ID: 23629879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Die Fledermaus: regarding optokinetic contrast sensitivity and light-adaptation, chicks are mice with wings.
    Shi Q; Stell WK
    PLoS One; 2013; 8(9):e75375. PubMed ID: 24098693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal 8-Hz flicker electroretinograms in carriers of X-linked retinoschisis.
    McAnany JJ; Park JC; Collison FT; Fishman GA; Stone EM
    Doc Ophthalmol; 2016 Aug; 133(1):61-70. PubMed ID: 27369766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.