These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 9858973)

  • 21. Fume hood exhaust re-entry into a chemistry building.
    Lamb BK; Cronn DR
    Am Ind Hyg Assoc J; 1986 Feb; 47(2):115-23. PubMed ID: 3953421
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies.
    Dunn KH; Tsai CS; Woskie SR; Bennett JS; Garcia A; Ellenbecker MJ
    J Occup Environ Hyg; 2014; 11(10):D164-73. PubMed ID: 25175285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Containment testing of laboratory hoods in the as-used condition.
    Greenley PL; Billings CE; DiBerardinis LJ; Edwards RW; Barkley WE
    Appl Occup Environ Hyg; 2000 Feb; 15(2):209-16. PubMed ID: 10675979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of thermal loading on laboratory fume hood performance.
    Johnston JD; Chessin SJ; Chesnovar BW; Lillquist DR
    Appl Occup Environ Hyg; 2000 Nov; 15(11):863-8. PubMed ID: 11062932
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of flange size on dividing streamlines of exterior hoods in cross drafts.
    Huang RF; Liu GS; Chen YK; Yeh WY; Chen CW; Chen CC
    J Occup Environ Hyg; 2004 May; 1(5):283-8. PubMed ID: 15238336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decontamination of a technetium contaminated fume hood in a research laboratory.
    O'Dou TJ; Bertoia J; Czerwinski KR
    Health Phys; 2011 Aug; 101 Suppl 2():S124-30. PubMed ID: 21709494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental characterization of a plume of passive contaminant above a thermal source: capture efficiency of a fume extraction hood.
    Devienne R; Fontaine JR; Kicka J; Bonthoux F
    Ann Occup Hyg; 2009 Oct; 53(7):739-48. PubMed ID: 19666957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Significance of face velocity fluctuation in relation to laboratory fume hood performance.
    Tseng LC; Huang RF; Chen CC
    Ind Health; 2010; 48(1):43-51. PubMed ID: 20160407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a push-pull ventilation system to control solder fume.
    Watson SI; Cain JR; Cowie H; Cherrie JW
    Ann Occup Hyg; 2001 Nov; 45(8):669-76. PubMed ID: 11718662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of Source Position and Obstructions on Fume Hood Releases.
    Mattox TM; Falzone C; Sadrizadeh S; Kuykendall T; Urban JJ
    Ann Work Expo Health; 2019 Oct; 63(8):937-949. PubMed ID: 31550345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational fluid dynamics as a method for assessing fume cupboard performance.
    Nicholson GP; Clark RP; de Calcina-Goff ML
    Ann Occup Hyg; 2000 May; 44(3):203-17. PubMed ID: 10775669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Evaluation of the reverse flow around a worker's body produced by a local exhaust hood].
    Ojima J
    Sangyo Eiseigaku Zasshi; 2003 Jul; 45(4):125-32. PubMed ID: 12968498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of sash movement and walk-bys on aerodynamics and contaminant leakage of laboratory fume cupboards.
    Tseng LC; Huang RF; Chen CC; Chang CP
    Ind Health; 2007 Apr; 45(2):199-208. PubMed ID: 17485863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fume hoods, open canopy type--their ability to capture pollutants in various environments.
    Bender M
    Am Ind Hyg Assoc J; 1979 Feb; 40(2):118-27. PubMed ID: 495443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical and numerical predictions of two-dimensional Aaberg slot exhaust hoods.
    Wen X; Ingham DB
    Ann Occup Hyg; 2000 Aug; 44(5):375-90. PubMed ID: 10930501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental and numerical studies on the impact of work practices used to control exposures occurring in booth-type hoods.
    Flynn MR; Lackey BD; Muthedath P
    Am Ind Hyg Assoc J; 1996 May; 57(5):469-75. PubMed ID: 8638518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retention efficacy and release of radioiodine in fume hoods.
    Schomäcker K; Fischer T; Zimmermanns B; Bregulla J; Sudbrock F; Prante O; Drzezga A
    J Environ Radioact; 2017 Jan; 166(Pt 1):175-180. PubMed ID: 26825260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of flow characteristics on ultrafine particle emissions from range hoods.
    Tseng LC; Chen CC
    Ann Occup Hyg; 2013 Aug; 57(7):920-33. PubMed ID: 23479025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Choosing the right fume hood.
    Hacker E
    Occup Health Saf; 2006 May; 75(5):66-8. PubMed ID: 16734288
    [No Abstract]   [Full Text] [Related]  

  • 40. Experimental investigation of power loss coefficients and static pressure ratios in an industrial exhaust ventilation system.
    Guffey SE; Spann JG
    Am Ind Hyg Assoc J; 1999; 60(3):367-76. PubMed ID: 10386358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.