BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 9859887)

  • 1. Transient-evoked otoacoustic emissions as a measure of noise-induced threshold shift.
    Marshall L; Heller LM
    J Speech Lang Hear Res; 1998 Dec; 41(6):1319-34. PubMed ID: 9859887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient evoked otoacoustic emissions in patients with normal hearing and in patients with hearing loss.
    Hussain DM; Gorga MP; Neely ST; Keefe DH; Peters J
    Ear Hear; 1998 Dec; 19(6):434-49. PubMed ID: 9867292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A longitudinal study of changes in evoked otoacoustic emissions and pure-tone thresholds as measured in a hearing conservation program.
    Lapsley Miller JA; Marshall L; Heller LM
    Int J Audiol; 2004 Jun; 43(6):307-22. PubMed ID: 15457813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient-evoked otoacoustic emissions in a group of professional singers who have normal pure-tone hearing thresholds.
    Hamdan AL; Abouchacra KS; Zeki Al Hazzouri AG; Zaytoun G
    Ear Hear; 2008 Jun; 29(3):360-77. PubMed ID: 18382377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)].
    Hoth S
    Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz.
    Jedrzejczak WW; Kochanek K; Trzaskowski B; Pilka E; Skarzynski PH; Skarzynski H
    Ear Hear; 2012; 33(6):757-67. PubMed ID: 22710662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ipsilateral and contralateral low-frequency narrow-band noise on temporary threshold shift in humans.
    Quaranta A; Scaringi A; Fernandez-Vega S; Quaranta N
    Acta Otolaryngol; 2003 Jan; 123(2):164-7. PubMed ID: 12701733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporary threshold shift and otoacoustic emissions after industrial noise exposure.
    Kvaerner KJ; Engdahl B; Arnesen AR; Mair IW
    Scand Audiol; 1995; 24(2):137-41. PubMed ID: 7660058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of transient-evoked and distortion product otoacoustic emissions in normal-hearing and hearing-impaired subjects.
    Gorga MP; Neely ST; Bergman BM; Beauchaine KL; Kaminski JR; Peters J; Schulte L; Jesteadt W
    J Acoust Soc Am; 1993 Nov; 94(5):2639-48. PubMed ID: 8270740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions.
    Putterman DB; Keefe DH; Hunter LL; Garinis AC; Fitzpatrick DF; McMillan GP; Feeney MP
    Ear Hear; 2017; 38(4):507-520. PubMed ID: 28437273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in cochlear function related to acoustic stimulation of cervical vestibular evoked myogenic potential stimulation.
    Strömberg AK; Olofsson Å; Westin M; Duan M; Stenfelt S
    Hear Res; 2016 Oct; 340():43-49. PubMed ID: 26724755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-specific information from click evoked otoacoustic emissions in noise-induced hearing loss.
    Tognola G; Grandori F; Avan P; Ravazzani P; Bonfils P
    Audiology; 1999; 38(5):243-50. PubMed ID: 10548370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise-induced otoacoustic emission loss with or without hearing loss.
    Attias J; Furst M; Furman V; Reshef I; Horowitz G; Bresloff I
    Ear Hear; 1995 Dec; 16(6):612-8. PubMed ID: 8747810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-variant analysis of otoacoustic emissions and estimation of hearing thresholds: transient evoked otoacoustic emissions.
    Vinck BM; Van Cauwenberge PB; Corthals P; De Vel E
    Audiology; 1998; 37(6):315-34. PubMed ID: 9888189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of neonatal hearing impairment: transient evoked otoacoustic emissions during the perinatal period.
    Norton SJ; Gorga MP; Widen JE; Vohr BR; Folsom RC; Sininger YS; Cone-Wesson B; Fletcher KA
    Ear Hear; 2000 Oct; 21(5):425-42. PubMed ID: 11059702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexposure effects of a 1-kHz tone on the distortion product otoacoustic emission in humans.
    Reuter K; Ordoñez R; Hammershoi D
    J Acoust Soc Am; 2007 Jul; 122(1):378-86. PubMed ID: 17614497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporary changes in hearing after exposure to shooting noise.
    Pawlaczyk-Luszczyńska M; Dudarewicz A; Bak M; Fiszer M; Kotyło P; Sliwińska-Kowalska M
    Int J Occup Med Environ Health; 2004; 17(2):285-93. PubMed ID: 15387085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the medial olivocochlear efferent system in children. pure tone 1.0 kHz and 2.0 kHz suppressive effects on transient evoked otoacoustic emission.
    Morawski K; Namyslowski G; Kossowska I; Lisowska G; Urbaniec P
    Scand Audiol Suppl; 2001; (52):112-5. PubMed ID: 11318438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary descriptions of transient-evoked and distortion-product otoacoustic emissions from graduates of an intensive care nursery.
    Bergman BM; Gorga MP; Neely ST; Kaminski JR; Beauchaine KL; Peters J
    J Am Acad Audiol; 1995 Mar; 6(2):150-62. PubMed ID: 7772784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of various durations of noise exposure on auditory brainstem response, distortion product otoacoustic emissions and transient evoked otoacoustic emissions in rats.
    Fraenkel R; Freeman S; Sohmer H
    Audiol Neurootol; 2001; 6(1):40-9. PubMed ID: 11173774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.