These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 9860105)
1. Role of the retrorubral nucleus in striatally elicited orofacial dyskinesia in cats: effects of muscimol and bicuculline. Arts MP; Bemelmans FF; Cools AR Psychopharmacology (Berl); 1998 Nov; 140(2):150-6. PubMed ID: 9860105 [TBL] [Abstract][Full Text] [Related]
2. Subregions of the caudate nucleus and their in- and output channels in oro-facial dyskinesia: a behavioural and retrograde tracing study in the cat. Spooren WP; Groenewegen HJ; Cools AR Brain Res; 1991 Jan; 539(1):85-93. PubMed ID: 1707740 [TBL] [Abstract][Full Text] [Related]
3. Activation of N-methyl-D-aspartate receptors in the feline retrorubral nucleus elicits orofacial dyskinesia. Arts M; Bemelmans F; Cools A Eur J Pharmacol; 1998 May; 349(1):23-31. PubMed ID: 9669492 [TBL] [Abstract][Full Text] [Related]
4. Role of GABA(A) receptors in the retrorubral field and ventral pallidum in rat jaw movements elicited by dopaminergic stimulation of the nucleus accumbens shell. Uchida T; Adachi K; Fujita S; Lee J; Gionhaku N; Cools AR; Koshikawa N Eur J Pharmacol; 2005 Mar; 510(1-2):39-47. PubMed ID: 15740723 [TBL] [Abstract][Full Text] [Related]
5. Anatomically distinct output channels of the caudate nucleus and orofacial dyskinesia: critical role of the subcommissural part of the globus pallidus in oral dyskinesia. Cools AR; Spooren W; Bezemer R; Cuypers E; Jaspers R; Groenewegen H Neuroscience; 1989; 33(3):535-42. PubMed ID: 2561520 [TBL] [Abstract][Full Text] [Related]
6. The substantia innominata complex and the peripeduncular nucleus in orofacial dyskinesia: a pharmacological and anatomical study in cats. Spooren WP; Mulders WH; Veening JG; Cools AR Neuroscience; 1993 Jan; 52(1):17-25. PubMed ID: 8433805 [TBL] [Abstract][Full Text] [Related]
7. GABA(A) agents injected into the ventral pallidum differentially affect dopaminergic pivoting and cholinergic circling elicited from the shell of the nucleus accumbens. Kitamura M; Ikeda H; Koshikawa N; Cools AR Neuroscience; 2001; 104(1):117-27. PubMed ID: 11311536 [TBL] [Abstract][Full Text] [Related]
8. Dopaminergic and cholinergic stimulation of the ventrolateral striatum elicit rat jaw movements that are funnelled via distinct efferents. Adachi K; Hasegawa M; Fujita S; Sato M; Miwa Y; Ikeda H; Koshikawa N; Cools AR Eur J Pharmacol; 2002 May; 442(1-2):81-92. PubMed ID: 12020685 [TBL] [Abstract][Full Text] [Related]
9. Role of GABAA receptors in the endomorphin-1-, but not endomorphin-2-, induced dopamine efflux in the nucleus accumbens of freely moving rats. Aono Y; Saigusa T; Mizoguchi N; Iwakami T; Takada K; Gionhaku N; Oi Y; Ueda K; Koshikawa N; Cools AR Eur J Pharmacol; 2008 Feb; 580(1-2):87-94. PubMed ID: 18021767 [TBL] [Abstract][Full Text] [Related]
10. Interactions of the subthalamic nucleus and the subpallidal area in oro-facial dyskinesia: role of GABA and glutamate. Spooren WP; Helfrich SE; Cools AR Psychopharmacology (Berl); 1995 May; 119(1):20-6. PubMed ID: 7675945 [TBL] [Abstract][Full Text] [Related]
11. GABAA and GABAB receptors in the nucleus accumbens shell differentially modulate dopamine and acetylcholine receptor-mediated turning behaviour. Akiyama G; Ikeda H; Matsuzaki S; Sato M; Moribe S; Koshikawa N; Cools AR Neuropharmacology; 2004 Jun; 46(8):1082-8. PubMed ID: 15111014 [TBL] [Abstract][Full Text] [Related]
12. The superior colliculus contains a discrete region involved in the control of jaw movements: role of GABAA receptors. Adachi K; Hasegawa M; Ikeda H; Sato M; Koshikawa N; Cools AR Eur J Pharmacol; 2003 Mar; 464(2-3):147-54. PubMed ID: 12620507 [TBL] [Abstract][Full Text] [Related]
13. GABAA receptors in the mediodorsal thalamus play a crucial role in rat shell-specific acetylcholine-mediated, but not dopamine-mediated, turning behaviour. Ikeda H; Kotani A; Lee J; Koshikawa N; Cools AR Neuroscience; 2009 Apr; 159(4):1200-7. PubMed ID: 19217930 [TBL] [Abstract][Full Text] [Related]
14. GABA(A) receptors of hippocampal CA1 regions are involved in the acquisition and expression of morphine-induced place preference. Rezayof A; Razavi S; Haeri-Rohani A; Rassouli Y; Zarrindast MR Eur Neuropsychopharmacol; 2007 Jan; 17(1):24-31. PubMed ID: 16624534 [TBL] [Abstract][Full Text] [Related]
15. Change in mechanical receptive field properties induced by GABA(A) receptor activation in the trigeminal spinal nucleus caudalis neurons in rats. Takeda M; Tanimoto T; Matsumoto S Exp Brain Res; 2000 Oct; 134(4):409-16. PubMed ID: 11081822 [TBL] [Abstract][Full Text] [Related]
16. GABA receptor mediated suppression of defensive rage behavior elicited from the medial hypothalamus of the cat: role of the lateral hypothalamus. Cheu JW; Siegel A Brain Res; 1998 Feb; 783(2):293-304. PubMed ID: 9507168 [TBL] [Abstract][Full Text] [Related]
17. GABA receptors in Deiters nucleus modulate posturokinetic responses to cortical stimulation in the cat. Luccarini P; Gahery Y; Blanchet G; Pompeiano O Arch Ital Biol; 1992 Mar; 130(2):127-54. PubMed ID: 1321596 [TBL] [Abstract][Full Text] [Related]
18. Comparison of effects of bilateral injections of bicuculline and muscimol into the caudate-putamen of amygdaloid-kindled rats. Mori N; Watanabe M Neurosci Lett; 1994 Mar; 169(1-2):129-32. PubMed ID: 8047267 [TBL] [Abstract][Full Text] [Related]
19. Circling behaviour induced by activation of GABAA receptors in the subthalamic nucleus. Murer MG; Pazo JH Neuroreport; 1993 Sep; 4(11):1219-22. PubMed ID: 8219017 [TBL] [Abstract][Full Text] [Related]
20. GABA-mediated regulation of feline aggression elicited from midbrain periaqueductal gray. Shaikh MB; Siegel A Brain Res; 1990 Jan; 507(1):51-6. PubMed ID: 2302579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]