BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9860112)

  • 1. Dextrorotatory opioids induce stereotyped behavior in Sprague-Dawley and Dark Agouti rats.
    Ishmael JE; Franklin PH; Murray TF
    Psychopharmacology (Berl); 1998 Nov; 140(2):206-16. PubMed ID: 9860112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dextromethorphan and dextrorphan in rats: common antitussives--different behavioural profiles.
    Dematteis M; Lallement G; Mallaret M
    Fundam Clin Pharmacol; 1998; 12(5):526-37. PubMed ID: 9794151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of dimemorfan to sigma-1 receptor and its anticonvulsant and locomotor effects in mice, compared with dextromethorphan and dextrorphan.
    Chou YC; Liao JF; Chang WY; Lin MF; Chen CF
    Brain Res; 1999 Mar; 821(2):516-9. PubMed ID: 10064839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dextrorotatory opioids and phencyclidine exert anticonvulsant action in prepiriform cortex.
    Roth JE; Zhang G; Murray TF; Franklin PH
    Eur J Pharmacol; 1992 May; 215(2-3):293-6. PubMed ID: 1327806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An extension of hypotheses regarding rapid-acting, treatment-refractory, and conventional antidepressant activity of dextromethorphan and dextrorphan.
    Lauterbach EC
    Med Hypotheses; 2012 Jun; 78(6):693-702. PubMed ID: 22401777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in anticonvulsant potency and adverse effects between dextromethorphan and dextrorphan in amygdala-kindled and non-kindled rats.
    Löscher W; Hönack D
    Eur J Pharmacol; 1993 Jul; 238(2-3):191-200. PubMed ID: 8405092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of phencyclidine-like behavior in rats by dextrorphan but not dextromethorphan.
    Székely JI; Sharpe LG; Jaffe JH
    Pharmacol Biochem Behav; 1991 Oct; 40(2):381-6. PubMed ID: 1805242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of cytochrome P-450 2D1 activity in rat brain: high-affinity kinetics for dextromethorphan.
    Tyndale RF; Li Y; Li NY; Messina E; Miksys S; Sellers EM
    Drug Metab Dispos; 1999 Aug; 27(8):924-30. PubMed ID: 10421620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the effects of dextromethorphan, dextrorphan, and levorphanol on the hypothalamo-pituitary-adrenal axis.
    Pechnick RN; Poland RE
    J Pharmacol Exp Ther; 2004 May; 309(2):515-22. PubMed ID: 14742749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discriminative stimulus properties of dextromethorphan in rats.
    Gavend M; Mallaret M; Dematteis M; Baragatti G
    Biomed Pharmacother; 1995; 49(10):456-64. PubMed ID: 8746072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the non-competitive antagonist binding site of the NMDA receptor in dark Agouti rats.
    Sun W; Wessinger WD
    Life Sci; 2004 Aug; 75(12):1405-15. PubMed ID: 15240177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological profile of dextrorphan.
    Fossati A; Vimercati MG; Caputo R; Valenti M
    Arzneimittelforschung; 1995 Nov; 45(11):1188-93. PubMed ID: 8929237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dextrorphan and dextromethorphan: comparative antitussive effects on guinea pigs.
    Braga PC; Fossati A; Vimercati MG; Caputo R; Guffanti EE
    Drugs Exp Clin Res; 1994; 20(5):199-203. PubMed ID: 7875056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-methyl-D-aspartate (NMDA) antagonists--S(+)-ketamine, dextrorphan, and dextromethorphan--act as calcium antagonists on bovine cerebral arteries.
    Kamel IR; Wendling WW; Chen D; Wendling KS; Harakal C; Carlsson C
    J Neurosurg Anesthesiol; 2008 Oct; 20(4):241-8. PubMed ID: 18812887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spinal anaesthetic effect of dextromethorphan, dextrorphan, and 3-methoxymorphinan.
    Chen YW; Chen YC; Lin CN; Chu CC; Lin MT; Wang JJ; Kao CH
    Eur J Pharmacol; 2007 Aug; 569(3):188-93. PubMed ID: 17601557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of [3H]MK-801 binding to N-methyl-D-aspartate receptors in cultured rat cerebellar granule neurons and involvement in glutamate-mediated toxicity.
    Berman FW; Murray TF
    J Biochem Toxicol; 1996; 11(5):217-26. PubMed ID: 9110243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dextromethorphan metabolism in rat: interstrain differences and the fate of individually administered oxidative metabolites.
    Bochner F; Somogyi AA; Chen ZR
    Xenobiotica; 1994 Jun; 24(6):543-52. PubMed ID: 7975720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary and secondary oxidative metabolism of dextromethorphan. In vitro studies with female Sprague-Dawley and Dark Agouti rat liver microsomes.
    Kerry NL; Somogyi AA; Mikus G; Bochner F
    Biochem Pharmacol; 1993 Feb; 45(4):833-9. PubMed ID: 8452558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dextromethorphan, 3-methoxymorphinan, and dextrorphan have local anaesthetic effect on sciatic nerve blockade in rats.
    Hou CH; Tzeng JI; Chen YW; Lin CN; Lin MT; Tu CH; Wang JJ
    Eur J Pharmacol; 2006 Aug; 544(1-3):10-6. PubMed ID: 16844109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative effects of dextromethorphan and dextrorphan on nicotine discrimination in rats.
    Wright MJ; Vann RE; Gamage TF; Damaj MI; Wiley JL
    Pharmacol Biochem Behav; 2006 Nov; 85(3):507-13. PubMed ID: 17112574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.