These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 9860500)
1. Identification of novel metabolites of butadiene monoepoxide in rats and mice. Richardson KA; Peters MM; Megens RH; van Elburg PA; Golding BT; Boogaard PJ; Watson WP; van Sittert NJ Chem Res Toxicol; 1998 Dec; 11(12):1543-55. PubMed ID: 9860500 [TBL] [Abstract][Full Text] [Related]
2. Dose responses for the formation of hemoglobin adducts and urinary metabolites in rats and mice exposed by inhalation to low concentrations of 1,3-[2,3-(14)C]-butadiene. Booth ED; Kilgour JD; Watson WP Chem Biol Interact; 2004 Mar; 147(2):213-32. PubMed ID: 15013822 [TBL] [Abstract][Full Text] [Related]
3. Characterization of urinary metabolites from Sprague-Dawley rats and B6C3F1 mice exposed to [1,2,3,4-13C]butadiene. Nauhaus SK; Fennell TR; Asgharian B; Bond JA; Sumner SC Chem Res Toxicol; 1996 Jun; 9(4):764-73. PubMed ID: 8831821 [TBL] [Abstract][Full Text] [Related]
4. Mercapturic acid urinary metabolites of 3-butene-1,2-diol as in vivo evidence for the formation of hydroxymethylvinyl ketone in mice and rats. Sprague CL; Elfarra AA Chem Res Toxicol; 2004 Jun; 17(6):819-26. PubMed ID: 15206903 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the biotransformation of 1,3-butadiene and its metabolite, butadiene monoepoxide, by hepatic and pulmonary tissues from humans, rats and mice. Csanády GA; Guengerich FP; Bond JA Carcinogenesis; 1992 Jul; 13(7):1143-53. PubMed ID: 1638680 [TBL] [Abstract][Full Text] [Related]
6. Bis-butanediol-mercapturic acid (bis-BDMA) as a urinary biomarker of metabolic activation of butadiene to its ultimate carcinogenic species. Kotapati S; Sangaraju D; Esades A; Hallberg L; Walker VE; Swenberg JA; Tretyakova NY Carcinogenesis; 2014 Jun; 35(6):1371-8. PubMed ID: 24531806 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of butadiene monoxide by freshly isolated hepatocytes from mice and rats: different partitioning between oxidative, hydrolytic, and conjugation pathways. Kemper RA; Krause RJ; Elfarra AA Drug Metab Dispos; 2001 Jun; 29(6):830-6. PubMed ID: 11353751 [TBL] [Abstract][Full Text] [Related]
9. High throughput HPLC-ESI(-)-MS/MS methodology for mercapturic acid metabolites of 1,3-butadiene: Biomarkers of exposure and bioactivation. Kotapati S; Esades A; Matter B; Le C; Tretyakova N Chem Biol Interact; 2015 Nov; 241():23-31. PubMed ID: 25727266 [TBL] [Abstract][Full Text] [Related]
10. Genotoxicity of 1,3-butadiene and its epoxy intermediates. Walker VE; Walker DM; Meng Q; McDonald JD; Scott BR; Seilkop SK; Claffey DJ; Upton PB; Powley MW; Swenberg JA; Henderson RF; Res Rep Health Eff Inst; 2009 Aug; (144):3-79. PubMed ID: 20017413 [TBL] [Abstract][Full Text] [Related]
11. A physiologically based pharmacokinetic model for butadiene and its metabolite butadiene monoxide in rat and mouse and its significance for risk extrapolation. Johanson G; Filser JG Arch Toxicol; 1993; 67(3):151-63. PubMed ID: 8494494 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the reactivity, regioselectivity, and stereoselectivity of the reactions of butadiene monoxide with valinamide and the N-terminal valine of mouse and rat hemoglobin. Moll TS; Elfarra AA Chem Res Toxicol; 1999 Aug; 12(8):679-89. PubMed ID: 10458701 [TBL] [Abstract][Full Text] [Related]
13. Stereochemical aspects of 1,3-butadiene metabolism and toxicity in rat and mouse liver microsomes and freshly isolated rat hepatocytes. Nieusma JL; Claffey DJ; Maniglier-Poulet C; Imiolczyk T; Ross D; Ruth JA Chem Res Toxicol; 1997 Apr; 10(4):450-6. PubMed ID: 9114983 [TBL] [Abstract][Full Text] [Related]
14. Species differences in the metabolism of 1,3-butadiene in vivo. Henderson RF; Bechtold WE; Sabourin PJ; Maples KR; Dahl AR IARC Sci Publ; 1993; (127):57-64. PubMed ID: 8070887 [TBL] [Abstract][Full Text] [Related]
15. Metabolism and disposition of n-butyl glycidyl ether in F344 rats and B6C3F1 mice. Chen LJ; Lebetkin EH; Nwakpuda EI; Burka LT Drug Metab Dispos; 2007 Dec; 35(12):2218-24. PubMed ID: 17875671 [TBL] [Abstract][Full Text] [Related]
16. Glutathione conjugation of 1,2:3,4- diepoxybutane in human liver and rat and mouse liver and lung in vitro. Boogaard PJ; Sumner SC; Bond JA Toxicol Appl Pharmacol; 1996 Feb; 136(2):307-16. PubMed ID: 8619238 [TBL] [Abstract][Full Text] [Related]
17. Comparison of blood concentrations of 1,3-butadiene and butadiene epoxides in mice and rats exposed to 1,3-butadiene by inhalation. Himmelstein MW; Turner MJ; Asgharian B; Bond JA Carcinogenesis; 1994 Aug; 15(8):1479-86. PubMed ID: 8055623 [TBL] [Abstract][Full Text] [Related]
18. Physiologically based pharmacokinetic modeling of 1,3-butadiene, 1,2-epoxy-3-butene, and 1,2:3,4-diepoxybutane toxicokinetics in mice and rats. Sweeney LM; Schlosser PM; Medinsky MA; Bond JA Carcinogenesis; 1997 Apr; 18(4):611-25. PubMed ID: 9111190 [TBL] [Abstract][Full Text] [Related]
19. DNA adducts in rats and mice following exposure to [4-14C]-1,2-epoxy-3-butene and to [2,3-14C]-1,3-butadiene. Boogaard PJ; de Kloe KP; Booth ED; Watson WP Chem Biol Interact; 2004 Jun; 148(1-2):69-92. PubMed ID: 15223358 [TBL] [Abstract][Full Text] [Related]
20. Research strategy for assessing target tissue dosimetry of 1,3-butadiene in laboratory animals and humans. Bond JA; Csanády GA; Leavens T; Medinsky MA IARC Sci Publ; 1993; (127):45-55. PubMed ID: 8070886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]