BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 9860856)

  • 1. Core mutations that promote the calcium-induced allosteric transition of bovine recoverin.
    Baldwin AN; Ames JB
    Biochemistry; 1998 Dec; 37(50):17408-19. PubMed ID: 9860856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state.
    Ames JB; Hamasaki N; Molchanova T
    Biochemistry; 2002 May; 41(18):5776-87. PubMed ID: 11980481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-dependent binding of recoverin to membranes monitored by surface plasmon resonance spectroscopy in real time.
    Lange C; Koch KW
    Biochemistry; 1997 Oct; 36(40):12019-26. PubMed ID: 9315839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanics of calcium-myristoyl switches.
    Ames JB; Ishima R; Tanaka T; Gordon JI; Stryer L; Ikura M
    Nature; 1997 Sep; 389(6647):198-202. PubMed ID: 9296500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino-terminal myristoylation induces cooperative calcium binding to recoverin.
    Ames JB; Porumb T; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Mar; 270(9):4526-33. PubMed ID: 7876221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state.
    Tanaka T; Ames JB; Harvey TS; Stryer L; Ikura M
    Nature; 1995 Aug; 376(6539):444-7. PubMed ID: 7630423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Single amino acid substitutions in the Ca2+-binding site of recoverin.II.The unusual behavior of the protein upon the binding of calcium ions].
    Uverskiĭ VN; Permiakov SE; Senin II; Cherskaia AM; Shul'ga-Morskoĭ SV; Zinchenko DV; Alekseev AM; Zargarov AA; Lipkin VM; Filippov PP; Permiakov EA
    Bioorg Khim; 2000 Mar; 26(3):173-8. PubMed ID: 10816814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Point amino acid substitutions in Ca2+-binding centers of recoverin. III. Mutant with the fourth reconstructed Ca2+-binding site].
    Permiakov SE; Uverskiĭ VN; Cherskaia AM; Shul'ga-Morskoĭ SV; Zinchenko DV; Alekseev AM; Zerniĭ EIu; Zargarov AA; Senin II; Lipkin VM; Filippov PP; Permiakov EA
    Bioorg Khim; 2000 Apr; 26(4):285-9. PubMed ID: 10857020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of carboxyl-terminal charges on S-modulin membrane affinity and inhibition of rhodopsin phosphorylation.
    Matsuda S; Hisatomi O; Tokunaga F
    Biochemistry; 1999 Jan; 38(4):1310-5. PubMed ID: 9930992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-myristoyl protein switch.
    Zozulya S; Stryer L
    Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11569-73. PubMed ID: 1454850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin.
    Weiergräber OH; Senin II; Philippov PP; Granzin J; Koch KW
    J Biol Chem; 2003 Jun; 278(25):22972-9. PubMed ID: 12686556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recoverin is a zinc-binding protein.
    Permyakov SE; Cherskaya AM; Wasserman LA; Khokhlova TI; Senin II; Zargarov AA; Zinchenko DV; Zernii EY; Lipkin VM; Philippov PP; Uversky VN; Permyakov EA
    J Proteome Res; 2003; 2(1):51-7. PubMed ID: 12643543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One of the Ca2+ binding sites of recoverin exclusively controls interaction with rhodopsin kinase.
    Komolov KE; Zinchenko DV; Churumova VA; Vaganova SA; Weiergräber OH; Senin II; Philippov PP; Koch KW
    Biol Chem; 2005 Mar; 386(3):285-9. PubMed ID: 15843174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional restoration of the Ca2+-myristoyl switch in a recoverin mutant.
    Senin II; Vaganova SA; Weiergräber OH; Ergorov NS; Philippov PP; Koch KW
    J Mol Biol; 2003 Jul; 330(2):409-18. PubMed ID: 12823978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Preparation of the myristoylated and nonmyristoylated form of recombinant recoverin in E. coli cells and comparison of their functional activity].
    Zargarov AA; Senin II; Alekseev AM; Shul'ga-Morskoĭ SV; Filippov PP; Lipkin VM
    Bioorg Khim; 1996 Jul; 22(7):483-8. PubMed ID: 8992953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic core substitutions in calbindin D9k: effects on Ca2+ binding and dissociation.
    Kragelund BB; Jönsson M; Bifulco G; Chazin WJ; Nilsson H; Finn BE; Linse S
    Biochemistry; 1998 Jun; 37(25):8926-37. PubMed ID: 9636034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Point amino acid substitutions in the Ca2+-binding centers of recoverin. I. Mechanism of successive filling of Ca2+-binding centers].
    Permiakov SE; Senin II; Uverskiĭ VN; Cherskaia AM; Shul'ga-Morskoĭ SV; Zinchenko DV; Alekseev AM; Zargarov AA; Lipkin VM; Filippov PP
    Bioorg Khim; 1999 Oct; 25(10):742-6. PubMed ID: 10645477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and membrane-targeting mechanism of retinal Ca2+-binding proteins, recoverin and GCAP-2.
    Ames JB; Ikura M
    Adv Exp Med Biol; 2002; 514():333-48. PubMed ID: 12596931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obtaining and characterization of EF-hand mutants of recoverin.
    Alekseev AM; Shulga-Morskoy SV; Zinchenko DV; Shulga-Morskaya SA; Suchkov DV; Vaganova SA; Senin II; Zargarov AA; Lipkin VM; Akhtar M; Philippov PP
    FEBS Lett; 1998 Nov; 440(1-2):116-8. PubMed ID: 9862438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of rhodopsin phosphorylation by non-myristoylated recombinant recoverin.
    Kawamura S; Cox JA; Nef P
    Biochem Biophys Res Commun; 1994 Aug; 203(1):121-7. PubMed ID: 8074645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.