These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1060 related articles for article (PubMed ID: 9860864)
21. Docking of nitrogenase iron- and molybdenum-iron proteins for electron transfer and MgATP hydrolysis: the role of arginine 140 and lysine 143 of the Azotobacter vinelandii iron protein. Seefeldt LC Protein Sci; 1994 Nov; 3(11):2073-81. PubMed ID: 7703853 [TBL] [Abstract][Full Text] [Related]
22. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein. Lanzilotta WN; Seefeldt LC Biochemistry; 1996 Dec; 35(51):16770-6. PubMed ID: 8988014 [TBL] [Abstract][Full Text] [Related]
23. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation. Lanzilotta WN; Seefeldt LC Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558 [TBL] [Abstract][Full Text] [Related]
24. Role for the nitrogenase MoFe protein alpha-subunit in FeMo-cofactor binding and catalysis. Scott DJ; May HD; Newton WE; Brigle KE; Dean DR Nature; 1990 Jan; 343(6254):188-90. PubMed ID: 2153269 [TBL] [Abstract][Full Text] [Related]
25. Evidence that conserved residues Cys-62 and Cys-154 within the Azotobacter vinelandii nitrogenase MoFe protein alpha-subunit are essential for nitrogenase activity but conserved residues His-83 and Cys-88 are not. Dean DR; Setterquist RA; Brigle KE; Scott DJ; Laird NF; Newton WE Mol Microbiol; 1990 Sep; 4(9):1505-12. PubMed ID: 2287275 [TBL] [Abstract][Full Text] [Related]
26. Mechanistic features and structure of the nitrogenase alpha-Gln195 MoFe protein. Sørlie M; Christiansen J; Lemon BJ; Peters JW; Dean DR; Hales BJ Biochemistry; 2001 Feb; 40(6):1540-9. PubMed ID: 11327812 [TBL] [Abstract][Full Text] [Related]
27. Kinetics and mechanism of the reaction of cyanide with molybdenum nitrogenase from Azotobacter vinelandii. Lowe DJ; Fisher K; Thorneley RN; Vaughn SA; Burgess BK Biochemistry; 1989 Oct; 28(21):8460-6. PubMed ID: 2605195 [TBL] [Abstract][Full Text] [Related]
28. Azotobacter vinelandii vanadium nitrogenase: formaldehyde is a product of catalyzed HCN reduction, and excess ammonia arises directly from catalyzed azide reduction. Fisher K; Dilworth MJ; Newton WE Biochemistry; 2006 Apr; 45(13):4190-8. PubMed ID: 16566593 [TBL] [Abstract][Full Text] [Related]
29. Elucidating the mechanism of nucleotide-dependent changes in the redox potential of the [4Fe-4S] cluster in nitrogenase iron protein: the role of phenylalanine 135. Ryle MJ; Lanzilotta WN; Seefeldt LC Biochemistry; 1996 Jul; 35(29):9424-34. PubMed ID: 8755721 [TBL] [Abstract][Full Text] [Related]
30. Nitrogenase reactivity: effects of pH on substrate reduction and CO inhibition. Pham DN; Burgess BK Biochemistry; 1993 Dec; 32(49):13725-31. PubMed ID: 8257707 [TBL] [Abstract][Full Text] [Related]
31. Competitive substrate and inhibitor interactions at the physiologically relevant active site of nitrogenase. Christiansen J; Seefeldt LC; Dean DR J Biol Chem; 2000 Nov; 275(46):36104-7. PubMed ID: 10948195 [TBL] [Abstract][Full Text] [Related]
32. Alkyne substrate interaction within the nitrogenase MoFe protein. Dos Santos PC; Mayer SM; Barney BM; Seefeldt LC; Dean DR J Inorg Biochem; 2007 Nov; 101(11-12):1642-8. PubMed ID: 17610955 [TBL] [Abstract][Full Text] [Related]
34. Mutagenesis studies of the FeSII protein of Azotobacter vinelandii: roles of histidine and lysine residues in the protection of nitrogenase from oxygen damage. Lou J; Moshiri F; Johnson MK; Lafferty ME; Sorkin DL; Miller A; Maier RJ Biochemistry; 1999 Apr; 38(17):5563-71. PubMed ID: 10220344 [TBL] [Abstract][Full Text] [Related]
35. Nitrogenase reactivity: cyanide as substrate and inhibitor. Li J; Burgess BK; Corbin JL Biochemistry; 1982 Aug; 21(18):4393-402. PubMed ID: 6982070 [TBL] [Abstract][Full Text] [Related]
36. Trapping an intermediate of dinitrogen (N2) reduction on nitrogenase. Barney BM; Lukoyanov D; Igarashi RY; Laryukhin M; Yang TC; Dean DR; Hoffman BM; Seefeldt LC Biochemistry; 2009 Sep; 48(38):9094-102. PubMed ID: 19663502 [TBL] [Abstract][Full Text] [Related]
37. Electrocatalytic CO Hu B; Harris DF; Dean DR; Liu TL; Yang ZY; Seefeldt LC Bioelectrochemistry; 2018 Apr; 120():104-109. PubMed ID: 29223886 [TBL] [Abstract][Full Text] [Related]
38. Mechanistic significance of the preparatory migration of hydrogen atoms around the FeMo-co active site of nitrogenase. Dance I Biochemistry; 2006 May; 45(20):6328-40. PubMed ID: 16700544 [TBL] [Abstract][Full Text] [Related]
39. NifI inhibits nitrogenase by competing with Fe protein for binding to the MoFe protein. Dodsworth JA; Leigh JA Biochem Biophys Res Commun; 2007 Dec; 364(2):378-82. PubMed ID: 17950693 [TBL] [Abstract][Full Text] [Related]
40. Variable-temperature, variable-field magnetic circular dichroism spectroscopic study of the metal clusters in the DeltanifB and DeltanifH mofe proteins of nitrogenase from Azotobacter vinelandii. Broach RB; Rupnik K; Hu Y; Fay AW; Cotton M; Ribbe MW; Hales BJ Biochemistry; 2006 Dec; 45(50):15039-48. PubMed ID: 17154541 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]