These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9860869)

  • 1. The unusually slow unfolding rate causes the high stability of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus: equilibrium and kinetic studies of guanidine hydrochloride-induced unfolding and refolding.
    Ogasahara K; Nakamura M; Nakura S; Tsunasawa S; Kato I; Yoshimoto T; Yutani K
    Biochemistry; 1998 Dec; 37(50):17537-44. PubMed ID: 9860869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The unusually slow relaxation kinetics of the folding-unfolding of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus.
    Kaushik JK; Ogasahara K; Yutani K
    J Mol Biol; 2002 Mar; 316(4):991-1003. PubMed ID: 11884137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetically robust monomeric protein from a hyperthermophile.
    Mukaiyama A; Takano K; Haruki M; Morikawa M; Kanaya S
    Biochemistry; 2004 Nov; 43(43):13859-66. PubMed ID: 15504048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusually slow denaturation and refolding processes of pyrrolidone carboxyl peptidase from a hyperthermophile are highly cooperative: real-time NMR studies.
    Iimura S; Yagi H; Ogasahara K; Akutsu H; Noda Y; Segawa S; Yutani K
    Biochemistry; 2004 Sep; 43(37):11906-15. PubMed ID: 15362877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray crystalline structures of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus, and its cys-free mutant.
    Tanaka H; Chinami M; Mizushima T; Ogasahara K; Ota M; Tsukihara T; Yutani K
    J Biochem; 2001 Jul; 130(1):107-18. PubMed ID: 11432786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal stability of pyrrolidone carboxyl peptidases from the hyperthermophilic Archaeon, Pyrococcus furiosus.
    Ogasahara K; Khechinashvili NN; Nakamura M; Yoshimoto T; Yutani K
    Eur J Biochem; 2001 Jun; 268(11):3233-42. PubMed ID: 11389725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the denatured structure of pyrrolidone carboxyl peptidase from a hyperthermophile under nondenaturing conditions: role of the C-terminal alpha-helix of the protein in folding and stability.
    Iimura S; Umezaki T; Takeuchi M; Mizuguchi M; Yagi H; Ogasahara K; Akutsu H; Noda Y; Segawa S; Yutani K
    Biochemistry; 2007 Mar; 46(12):3664-72. PubMed ID: 17309236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic basis for the stabilities of three CutA1s from Pyrococcus horikoshii,Thermus thermophilus, and Oryza sativa, with unusually high denaturation temperatures.
    Sawano M; Yamamoto H; Ogasahara K; Kidokoro S; Katoh S; Ohnuma T; Katoh E; Yokoyama S; Yutani K
    Biochemistry; 2008 Jan; 47(2):721-30. PubMed ID: 18154307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Completely buried, non-ion-paired glutamic acid contributes favorably to the conformational stability of pyrrolidone carboxyl peptidases from hyperthermophiles.
    Kaushik JK; Iimura S; Ogasahara K; Yamagata Y; Segawa S; Yutani K
    Biochemistry; 2006 Jun; 45(23):7100-12. PubMed ID: 16752900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow irreversible unfolding of Pyrococcus furiosus triosephosphate isomerase: separation and quantitation of conformers through a novel electrophoretic approach.
    Mukherjee S; Sharma S; Kumar S; Guptasarma P
    Anal Biochem; 2005 Dec; 347(1):49-59. PubMed ID: 16236239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium and kinetic analyses of unfolding and refolding for the conserved proline mutants of tryptophan synthase alpha subunit.
    Ogasahara K; Yutani K
    Biochemistry; 1997 Jan; 36(4):932-40. PubMed ID: 9020793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equilibrium and kinetic stability of a hyperthermophilic protein, O6-methylguanine-DNA methyltransferase under various extreme conditions.
    Nishikori S; Shiraki K; Okanojo M; Imanaka T; Takagi M
    J Biochem; 2004 Oct; 136(4):503-8. PubMed ID: 15625320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unfolding and refolding of Coprinus cinereus peroxidase at high pH, in urea, and at high temperature. Effect of organic and ionic additives on these processes.
    Tams JW; Welinder KG
    Biochemistry; 1996 Jun; 35(23):7573-9. PubMed ID: 8652538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of ribonuclease T2 from Aspergillus oryzae.
    Kawata Y; Hamaguchi K
    Protein Sci; 1995 Mar; 4(3):416-20. PubMed ID: 7795525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrrolidone carboxyl peptidase from the hyperthermophilic Archaeon Pyrococcus furiosus: cloning and overexpression in Escherichia coli of the gene, and its application to protein sequence analysis.
    Tsunasawa S; Nakura S; Tanigawa T; Kato I
    J Biochem; 1998 Oct; 124(4):778-83. PubMed ID: 9756623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization of a trapped folding intermediate of pyrrolidone carboxyl peptidase from a hyperthermophile.
    Mizuguchi M; Takeuchi M; Ohki S; Nabeshima Y; Kouno T; Aizawa T; Demura M; Kawano K; Yutani K
    Biochemistry; 2012 Aug; 51(31):6089-96. PubMed ID: 22799522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation of partly folded states in the equilibrium unfolding of ervatamin A: spectroscopic description of the native, intermediate, and unfolded states.
    Nallamsetty S; Dubey VK; Pande M; Ambasht PK; Jagannadham MV
    Biochimie; 2007 Nov; 89(11):1416-24. PubMed ID: 17658212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining folding and unfolding reactions of apocytochrome b5 using equilibrium and kinetic fluorescence measurements.
    Manyusa S; Whitford D
    Biochemistry; 1999 Jul; 38(29):9533-40. PubMed ID: 10413531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.