BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

721 related articles for article (PubMed ID: 9860872)

  • 21. Ceramide-enriched membrane domains in red blood cells and the mechanism of sphingomyelinase-induced hot-cold hemolysis.
    Montes LR; López DJ; Sot J; Bagatolli LA; Stonehouse MJ; Vasil ML; Wu BX; Hannun YA; Goñi FM; Alonso A
    Biochemistry; 2008 Oct; 47(43):11222-30. PubMed ID: 18826261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipid domain morphologies in phosphatidylcholine-ceramide monolayers.
    Karttunen M; Haataja MP; Säily M; Vattulainen I; Holopainen JM
    Langmuir; 2009 Apr; 25(8):4595-600. PubMed ID: 19249826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable nucleation time of functional sphingomyelinase--lipid features studied by membrane array statistic tool.
    Lin CY; Chao L
    Langmuir; 2013 Oct; 29(42):13008-17. PubMed ID: 24059643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers.
    Fanani ML; Härtel S; Oliveira RG; Maggio B
    Biophys J; 2002 Dec; 83(6):3416-24. PubMed ID: 12496108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: a glimpse into sphingolipid complexity.
    Jiménez-Rojo N; García-Arribas AB; Sot J; Alonso A; Goñi FM
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):456-64. PubMed ID: 24144542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cholesterol modulation of sphingomyelinase activity at physiological temperatures.
    Contreras FX; Sot J; Ruiz-Argüello MB; Alonso A; Goñi FM
    Chem Phys Lipids; 2004 Jul; 130(2):127-34. PubMed ID: 15172829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interlamellar coupling of phospholipid bilayers in liposomes: an emergent property of lipid rearrangement.
    Parry MJ; Hagen M; Mouritsen OG; Kinnunen PK; Alakoskela JM
    Langmuir; 2010 Apr; 26(7):4909-15. PubMed ID: 20180577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2.
    Oninla VO; Breiden B; Babalola JO; Sandhoff K
    J Lipid Res; 2014 Dec; 55(12):2606-19. PubMed ID: 25339683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface tension induced by sphingomyelin to ceramide conversion in lipid membranes.
    López-Montero I; Vélez M; Devaux PF
    Biochim Biophys Acta; 2007 Mar; 1768(3):553-61. PubMed ID: 17292325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissociation of cytochrome c from liposomes by histone H1. Comparison with basic peptides.
    Rytömaa M; Kinnunen PK
    Biochemistry; 1996 Apr; 35(14):4529-39. PubMed ID: 8605203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid metabolic changes caused by short-chain ceramides and the connection with apoptosis.
    Allan D
    Biochem J; 2000 Feb; 345 Pt 3(Pt 3):603-10. PubMed ID: 10642519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of the phospholipid sphingomyelin in heart disease.
    Chatterjee S; Kolmakova A; Miller M
    Curr Opin Investig Drugs; 2006 Mar; 7(3):219-28. PubMed ID: 16555682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partial hepatectomy activates production of the pro-mitotic intermediates of the sphingomyelin signal transduction pathway in the rat liver.
    Zabielski P; Baranowski M; Zendzian-Piotrowska M; Blachnio A; Gorski J
    Prostaglandins Other Lipid Mediat; 2007 Jun; 83(4):277-84. PubMed ID: 17499747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Implication of sphingomyelin/ceramide molar ratio on the biological activity of sphingomyelinase.
    Boulgaropoulos B; Amenitsch H; Laggner P; Pabst G
    Biophys J; 2010 Jul; 99(2):499-506. PubMed ID: 20643068
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2n-fatty acids from phosphatidylcholine label sphingolipids--a novel role of phospholipase A2?
    Meyer SG; Karow W; de Groot H
    Biochim Biophys Acta; 2005 Jun; 1735(1):68-78. PubMed ID: 15950537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cholesterol's interactions with serine phospholipids - a comparison of N-palmitoyl ceramide phosphoserine with dipalmitoyl phosphatidylserine.
    Sergelius C; Yamaguchi S; Yamamoto T; Engberg O; Katsumura S; Slotte JP
    Biochim Biophys Acta; 2013 Feb; 1828(2):785-91. PubMed ID: 23159809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lateral organization of GM1 in phase-separated monolayers visualized by scanning force microscopy.
    Menke M; Künneke S; Janshoff A
    Eur Biophys J; 2002 Jul; 31(4):317-22. PubMed ID: 12122478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR.
    Aussenac F; Tavares M; Dufourc EJ
    Biochemistry; 2003 Feb; 42(6):1383-90. PubMed ID: 12578350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1995 Feb; 68(2):525-35. PubMed ID: 7696506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ceramide-1-phosphate, in contrast to ceramide, is not segregated into lateral lipid domains in phosphatidylcholine bilayers.
    Morrow MR; Helle A; Perry J; Vattulainen I; Wiedmer SK; Holopainen JM
    Biophys J; 2009 Mar; 96(6):2216-26. PubMed ID: 19289048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.