These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 9860873)
21. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Loganzo F; Discafani CM; Annable T; Beyer C; Musto S; Hari M; Tan X; Hardy C; Hernandez R; Baxter M; Singanallore T; Khafizova G; Poruchynsky MS; Fojo T; Nieman JA; Ayral-Kaloustian S; Zask A; Andersen RJ; Greenberger LM Cancer Res; 2003 Apr; 63(8):1838-45. PubMed ID: 12702571 [TBL] [Abstract][Full Text] [Related]
22. A-204197, a new tubulin-binding agent with antimitotic activity in tumor cell lines resistant to known microtubule inhibitors. Tahir SK; Han EK; Credo B; Jae HS; Pietenpol JA; Scatena CD; Wu-Wong JR; Frost D; Sham H; Rosenberg SH; Ng SC Cancer Res; 2001 Jul; 61(14):5480-5. PubMed ID: 11454695 [TBL] [Abstract][Full Text] [Related]
23. Estramustine depolymerizes microtubules by binding to tubulin. Dahllöf B; Billström A; Cabral F; Hartley-Asp B Cancer Res; 1993 Oct; 53(19):4573-81. PubMed ID: 8402630 [TBL] [Abstract][Full Text] [Related]
24. Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules. Caplow M; Fee L Biochemistry; 2003 Feb; 42(7):2122-6. PubMed ID: 12590601 [TBL] [Abstract][Full Text] [Related]
25. Interaction of dolastatin 10 with tubulin: induction of aggregation and binding and dissociation reactions. Bai R; Taylor GF; Schmidt JM; Williams MD; Kepler JA; Pettit GR; Hamel E Mol Pharmacol; 1995 May; 47(5):965-76. PubMed ID: 7746283 [TBL] [Abstract][Full Text] [Related]
26. Binding of vinblastine to stabilized microtubules. Singer WD; Jordan MA; Wilson L; Himes RH Mol Pharmacol; 1989 Sep; 36(3):366-70. PubMed ID: 2571072 [TBL] [Abstract][Full Text] [Related]
27. Determination of the net exchange rate of tubulin dimer in steady-state microtubules by fluorescence correlation spectroscopy. Neumann T; Kirschstein SO; Camacho Gomez JA; Kittler L; Unger E Biol Chem; 2001 Mar; 382(3):387-91. PubMed ID: 11347885 [TBL] [Abstract][Full Text] [Related]
28. Analysis of dynamic instability of steady-state microtubules in vitro by video-enhanced differential interference contrast microscopy with an appendix by Emin Oroudjev. Yenjerla M; Lopus M; Wilson L Methods Cell Biol; 2010; 95():189-206. PubMed ID: 20466136 [TBL] [Abstract][Full Text] [Related]
29. Additivity of dilantin and vinblastine inhibitory effects on microtubule assembly. Lobert S; Ingram JW; Correia JJ Cancer Res; 1999 Oct; 59(19):4816-22. PubMed ID: 10519390 [TBL] [Abstract][Full Text] [Related]
30. Two photoaffinity analogues of the tripeptide, hemiasterlin, exclusively label alpha-tubulin. Nunes M; Kaplan J; Wooters J; Hari M; Minnick AA; May MK; Shi C; Musto S; Beyer C; Krishnamurthy G; Qiu Y; Loganzo F; Ayral-Kaloustian S; Zask A; Greenberger LM Biochemistry; 2005 May; 44(18):6844-57. PubMed ID: 15865430 [TBL] [Abstract][Full Text] [Related]
31. Inhibition of bovine brain microtubule assembly in vitro by stypoldione. O'Brien ET; Jacobs RS; Wilson L Mol Pharmacol; 1983 Nov; 24(3):493-9. PubMed ID: 6633509 [TBL] [Abstract][Full Text] [Related]
32. Vitamin K3 disrupts the microtubule networks by binding to tubulin: a novel mechanism of its antiproliferative activity. Acharya BR; Choudhury D; Das A; Chakrabarti G Biochemistry; 2009 Jul; 48(29):6963-74. PubMed ID: 19527023 [TBL] [Abstract][Full Text] [Related]
33. Thalidomide (5HPP-33) suppresses microtubule dynamics and depolymerizes the microtubule network by binding at the vinblastine binding site on tubulin. Rashid A; Kuppa A; Kunwar A; Panda D Biochemistry; 2015 Mar; 54(12):2149-59. PubMed ID: 25747795 [TBL] [Abstract][Full Text] [Related]
34. Biophysical characterization of the interactions of HTI-286 with tubulin heterodimer and microtubules. Krishnamurthy G; Cheng W; Lo MC; Aulabaugh A; Razinkov V; Ding W; Loganzo F; Zask A; Ellestad G Biochemistry; 2003 Nov; 42(46):13484-95. PubMed ID: 14621994 [TBL] [Abstract][Full Text] [Related]
36. Fluorescent taxoids as probes of the microtubule cytoskeleton. Evangelio JA; Abal M; Barasoain I; Souto AA; Lillo MP; Acuña AU; Amat-Guerri F; Andreu JM Cell Motil Cytoskeleton; 1998; 39(1):73-90. PubMed ID: 9453715 [TBL] [Abstract][Full Text] [Related]
37. Kinetic stabilization of microtubule dynamics at steady state by tau and microtubule-binding domains of tau. Panda D; Goode BL; Feinstein SC; Wilson L Biochemistry; 1995 Sep; 34(35):11117-27. PubMed ID: 7669769 [TBL] [Abstract][Full Text] [Related]
38. Natural organic compounds that affect to microtubule functions. Iwasaki S Yakugaku Zasshi; 1998 Apr; 118(4):112-26. PubMed ID: 9564789 [TBL] [Abstract][Full Text] [Related]
39. Stathmin family protein SCG10 differentially regulates the plus and minus end dynamics of microtubules at steady state in vitro: implications for its role in neurite outgrowth. Manna T; Grenningloh G; Miller HP; Wilson L Biochemistry; 2007 Mar; 46(11):3543-52. PubMed ID: 17311410 [TBL] [Abstract][Full Text] [Related]
40. Phosphate release during microtubule assembly: what stabilizes growing microtubules? Vandecandelaere A; Brune M; Webb MR; Martin SR; Bayley PM Biochemistry; 1999 Jun; 38(25):8179-88. PubMed ID: 10387063 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]