BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 9860877)

  • 21. Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis.
    Timofeevski SL; Nie G; Reading NS; Aust SD
    Biochem Biophys Res Commun; 1999 Mar; 256(3):500-4. PubMed ID: 10080927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autocatalytic formation of a hydroxy group at C beta of trp171 in lignin peroxidase.
    Blodig W; Doyle WA; Smith AT; Winterhalter K; Choinowski T; Piontek K
    Biochemistry; 1998 Jun; 37(25):8832-8. PubMed ID: 9636023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification and molecular properties of ascorbate peroxidase from bovine eye.
    Wada N; Kinoshita S; Matsuo M; Amako K; Miyake C; Asada K
    Biochem Biophys Res Commun; 1998 Jan; 242(2):256-61. PubMed ID: 9446780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of cysteine residues on the activity of arginyl-tRNA synthetase from Escherichia coli.
    Liu M; Huang Y; Wu J; Wang E; Wang Y
    Biochemistry; 1999 Aug; 38(34):11006-11. PubMed ID: 10460155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic, and crystallographic study.
    Ruiz-Dueñas FJ; Morales M; Pérez-Boada M; Choinowski T; Martínez MJ; Piontek K; Martínez AT
    Biochemistry; 2007 Jan; 46(1):66-77. PubMed ID: 17198376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography.
    Henriksen A; Schuller DJ; Meno K; Welinder KG; Smith AT; Gajhede M
    Biochemistry; 1998 Jun; 37(22):8054-60. PubMed ID: 9609699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate binding and catalytic mechanism in ascorbate peroxidase: evidence for two ascorbate binding sites.
    Lad L; Mewies M; Raven EL
    Biochemistry; 2002 Nov; 41(46):13774-81. PubMed ID: 12427040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two substrate binding sites in ascorbate peroxidase: the role of arginine 172.
    Bursey EH; Poulos TL
    Biochemistry; 2000 Jun; 39(25):7374-9. PubMed ID: 10858284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of ascorbate peroxidase with substrates: a mechanistic and structural analysis.
    Macdonald IK; Badyal SK; Ghamsari L; Moody PC; Raven EL
    Biochemistry; 2006 Jun; 45(25):7808-17. PubMed ID: 16784232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heme electron transfer in peroxidases: the propionate e-pathway.
    Guallar V
    J Phys Chem B; 2008 Oct; 112(42):13460-4. PubMed ID: 18816089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altering substrate specificity at the heme edge of cytochrome c peroxidase.
    Wilcox SK; Jensen GM; Fitzgerald MM; McRee DE; Goodin DB
    Biochemistry; 1996 Apr; 35(15):4858-66. PubMed ID: 8664277
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of an archaeal peroxiredoxin from the aerobic hyperthermophilic crenarchaeon Aeropyrum pernix K1.
    Mizohata E; Sakai H; Fusatomi E; Terada T; Murayama K; Shirouzu M; Yokoyama S
    J Mol Biol; 2005 Nov; 354(2):317-29. PubMed ID: 16214169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. QM/MM studies of the electronic structure of the compound I intermediate in cytochrome c peroxidase and ascorbate peroxidase.
    Bathelt CM; Mulholland AJ; Harvey JN
    Dalton Trans; 2005 Nov; (21):3470-6. PubMed ID: 16234927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular engineering of myoglobin: influence of residue 68 on the rate and the enantioselectivity of oxidation reactions catalyzed by H64D/V68X myoglobin.
    Yang HJ; Matsui T; Ozaki S; Kato S; Ueno T; Phillips GN; Fukuzumi S; Watanabe Y
    Biochemistry; 2003 Sep; 42(34):10174-81. PubMed ID: 12939145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Abolishing activity against ascorbate in a cytosolic ascorbate peroxidase from switchgrass.
    Kovacs FA; Sarath G; Woodworth K; Twigg P; Tobias CM
    Phytochemistry; 2013 Oct; 94():45-52. PubMed ID: 23809633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An engineered cation site in cytochrome c peroxidase alters the reactivity of the redox active tryptophan.
    Bonagura CA; Sundaramoorthy M; Pappa HS; Patterson WR; Poulos TL
    Biochemistry; 1996 May; 35(19):6107-15. PubMed ID: 8634253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of proximal methionine residues in Leishmania major peroxidase.
    Yadav RK; Pal S; Dolai S; Adak S
    Arch Biochem Biophys; 2011 Nov; 515(1-2):21-7. PubMed ID: 21893024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of nitric oxide with 2-thio-5-nitrobenzoic acid: implications for the determination of free sulfhydryl groups by Ellman's reagent.
    Gergel' D; Cederbaum AI
    Arch Biochem Biophys; 1997 Nov; 347(2):282-8. PubMed ID: 9367537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proximal cavity, distal histidine, and substrate hydrogen-bonding mutations modulate the activity of Amphitrite ornata dehaloperoxidase.
    Franzen S; Belyea J; Gilvey LB; Davis MF; Chaudhary CE; Sit TL; Lommel SA
    Biochemistry; 2006 Aug; 45(30):9085-94. PubMed ID: 16866354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.