These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 9860949)

  • 1. Temperature, template topology, and factor requirements of archaeal transcription.
    Bell SD; Jaxel C; Nadal M; Kosa PF; Jackson SP
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15218-22. PubMed ID: 9860949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cloning of the transcription factor TFIIB homolog from Sulfolobus shibatae.
    Qureshi SA; Khoo B; Baumann P; Jackson SP
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6077-81. PubMed ID: 7597084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factor requirements for transcription in the Archaeon Sulfolobus shibatae.
    Qureshi SA; Bell SD; Jackson SP
    EMBO J; 1997 May; 16(10):2927-36. PubMed ID: 9184236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The archaeal TFIIEalpha homologue facilitates transcription initiation by enhancing TATA-box recognition.
    Bell SD; Brinkman AB; van der Oost J; Jackson SP
    EMBO Rep; 2001 Feb; 2(2):133-8. PubMed ID: 11258705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of autoregulation by an archaeal transcriptional repressor.
    Bell SD; Jackson SP
    J Biol Chem; 2000 Oct; 275(41):31624-9. PubMed ID: 10900210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple sets of basal factors initiate transcription by RNA polymerase II.
    Parvin JD; Shykind BM; Meyers RE; Kim J; Sharp PA
    J Biol Chem; 1994 Jul; 269(28):18414-21. PubMed ID: 8034589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Archaeal transcription factors and their role in transcription initiation.
    Thomm M
    FEMS Microbiol Rev; 1996 May; 18(2-3):159-71. PubMed ID: 8639326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basal and regulated transcription in Archaea.
    Bell SD; Magill CP; Jackson SP
    Biochem Soc Trans; 2001 Aug; 29(Pt 4):392-5. PubMed ID: 11497995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The basal transcription factors TBP and TFB from the mesophilic archaeon Methanosarcina mazeii: structure and conformational changes upon interaction with stress-gene promoters.
    Thomsen J; De Biase A; Kaczanowski S; Macario AJ; Thomm M; Zielenkiewicz P; MacColl R; Conway de Macario E
    J Mol Biol; 2001 Jun; 309(3):589-603. PubMed ID: 11397082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoter recognition in archaea is mediated by transcription factors: identification of transcription factor aTFB from Methanococcus thermolithotrophicus as archaeal TATA-binding protein.
    Gohl HP; Gröndahl B; Thomm M
    Nucleic Acids Res; 1995 Oct; 23(19):3837-41. PubMed ID: 7479025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two transcription factors related with the eucaryal transcription factors TATA-binding protein and transcription factor IIB direct promoter recognition by an archaeal RNA polymerase.
    Hausner W; Wettach J; Hethke C; Thomm M
    J Biol Chem; 1996 Nov; 271(47):30144-8. PubMed ID: 8939964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Events during initiation of archaeal transcription: open complex formation and DNA-protein interactions.
    Hausner W; Thomm M
    J Bacteriol; 2001 May; 183(10):3025-31. PubMed ID: 11325929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of DNA topology during thermal stress in hyperthermophilic archaea: DNA topoisomerase levels, activities and induced thermotolerance during heat and cold shock in Sulfolobus.
    López-García P; Forterre P
    Mol Microbiol; 1999 Aug; 33(4):766-77. PubMed ID: 10447886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interaction of yeast and human TATA-binding proteins with an archaeal RNA polymerase and promoter.
    Wettach J; Gohl HP; Tschochner H; Thomm M
    Proc Natl Acad Sci U S A; 1995 Jan; 92(2):472-6. PubMed ID: 7831313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-specific DNA binding by the S. shibatae TFIIB homolog, TFB, and its effect on promoter strength.
    Qureshi SA; Jackson SP
    Mol Cell; 1998 Feb; 1(3):389-400. PubMed ID: 9660923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and functional analysis of the TATA binding protein from Sulfolobus shibatae.
    Qureshi SA; Baumann P; Rowlands T; Khoo B; Jackson SP
    Nucleic Acids Res; 1995 May; 23(10):1775-81. PubMed ID: 7784182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Lrp-like protein of the hyperthermophilic archaeon Sulfolobus solfataricus which binds to its own promoter.
    Napoli A; van der Oost J; Sensen CW; Charlebois RL; Rossi M; Ciaramella M
    J Bacteriol; 1999 Mar; 181(5):1474-80. PubMed ID: 10049378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of promoter escape by RNA polymerase II.
    Conaway JW; Dvir A; Moreland RJ; Yan Q; Elmendorf BJ; Tan S; Conaway RC
    Cold Spring Harb Symp Quant Biol; 1998; 63():357-64. PubMed ID: 10384300
    [No Abstract]   [Full Text] [Related]  

  • 19. A Pyrococcus homolog of the leucine-responsive regulatory protein, LrpA, inhibits transcription by abrogating RNA polymerase recruitment.
    Dahlke I; Thomm M
    Nucleic Acids Res; 2002 Feb; 30(3):701-10. PubMed ID: 11809882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Archaeal chromatin and transcription.
    Reeve JN
    Mol Microbiol; 2003 May; 48(3):587-98. PubMed ID: 12694606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.