These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9860966)

  • 1. Protein fluctuations are sensed by stimulated infrared echoes of the vibrations of carbon monoxide and azide probes.
    Lim M; Hamm P; Hochstrasser RM
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15315-20. PubMed ID: 9860966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of functional and structural consequences of the tyrosine B10 and glutamine E7 motifs in two invertebrate hemoglobins (Ascaris suum and Lucina pectinata).
    Peterson ES; Huang S; Wang J; Miller LM; Vidugiris G; Kloek AP; Goldberg DE; Chance MR; Wittenberg JB; Friedman JM
    Biochemistry; 1997 Oct; 36(42):13110-21. PubMed ID: 9335574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond dynamics of ligand interconversion in the primary docking site of heme proteins.
    Kim S; Lim M
    J Am Chem Soc; 2005 Apr; 127(16):5786-7. PubMed ID: 15839666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fifth-order contributions to ultrafast spectrally resolved vibrational echoes: heme-CO proteins.
    Finkelstein IJ; McClain BL; Fayer MD
    J Chem Phys; 2004 Jul; 121(2):877-85. PubMed ID: 15260618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereodynamic properties of the cooperative homodimeric Scapharca inaequivalvis hemoglobin studied through optical absorption spectroscopy and ligand rebinding kinetics.
    Boffi A; Verzili D; Chiancone E; Leone M; Cupane A; Militello V; Vitrano E; Cordone L; Yu W; Di Iorio EE
    Biophys J; 1994 Oct; 67(4):1713-23. PubMed ID: 7819503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast 2DIR spectroscopy of ferric azide precursors for high-valent iron. Vibrational relaxation, spectral diffusion, and dynamic symmetry breaking.
    Czurlok D; Torres-Alacan J; Vöhringer P
    J Chem Phys; 2015 Jun; 142(21):212402. PubMed ID: 26049422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The carbon monoxide derivative of human hemoglobin carrying the double mutation LeuB10-->Tyr and HisE7-->Gln on alpha and beta chains probed by infrared spectroscopy.
    Miele AE; Draghi F; Vallone B; Boffi A
    Arch Biochem Biophys; 2002 Jun; 402(1):59-64. PubMed ID: 12051683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational dynamics of azide-derivatized amino acids studied by nonlinear infrared spectroscopy.
    Okuda M; Ohta K; Tominaga K
    J Chem Phys; 2015 Jun; 142(21):212418. PubMed ID: 26049438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced-orientation of nitrogen monoxide and azide ion vibrations in human hemoglobin in bidistilled water solution under a static magnetic field.
    Calabrò E; Magazù S
    Bioelectromagnetics; 2017 Sep; 38(6):447-455. PubMed ID: 28453873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanosecond step-scan FTIR spectroscopy of hemoglobin: ligand recombination and protein conformational changes.
    Hu X; Frei H; Spiro TG
    Biochemistry; 1996 Oct; 35(40):13001-5. PubMed ID: 8855934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of the vibrations of the aqueous azide ion with the O-H modes of bound water molecules.
    Kuo CH; Vorobyev DY; Chen J; Hochstrasser RM
    J Phys Chem B; 2007 Dec; 111(50):14028-33. PubMed ID: 18044873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand migration and binding in nonsymbiotic hemoglobins of Arabidopsis thaliana.
    Nienhaus K; Dominici P; Astegno A; Abbruzzetti S; Viappiani C; Nienhaus GU
    Biochemistry; 2010 Sep; 49(35):7448-58. PubMed ID: 20666470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational energy relaxation of azide in water.
    Li S; Schmidt JR; Skinner JL
    J Chem Phys; 2006 Dec; 125(24):244507. PubMed ID: 17199355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser control of vibrational excitation in carboxyhemoglobin: a quantum wave packet study.
    Meier C; Heitz MC
    J Chem Phys; 2005 Jul; 123(4):044504. PubMed ID: 16095366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic studies of the nature of ligand bonding in carbonmonoxyhemoglobins: evidence of a specific function for histidine-E7 from infrared and nuclear magnetic resonance intensities.
    Satterlee JD; Teintze M; Richards JH
    Biochemistry; 1978 Apr; 17(8):1456-62. PubMed ID: 565651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational spectral diffusion of azide in water.
    Li S; Schmidt JR; Piryatinski A; Lawrence CP; Skinner JL
    J Phys Chem B; 2006 Sep; 110(38):18933-8. PubMed ID: 16986886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO as a vibrational probe of heme protein active sites.
    Spiro TG; Wasbotten IH
    J Inorg Biochem; 2005 Jan; 99(1):34-44. PubMed ID: 15598489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Dimensional Infrared Study of Vibrational Coupling between Azide and Nitrile Reporters in a RNA Nucleoside.
    Schmitz AJ; Hogle DG; Gai XS; Fenlon EE; Brewer SH; Tucker MJ
    J Phys Chem B; 2016 Sep; 120(35):9387-94. PubMed ID: 27510724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast time-resolved IR studies of protein-ligand interactions.
    Lim M; Anfinrud PA
    Methods Mol Biol; 2005; 305():243-60. PubMed ID: 15940001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double mixing methods for kinetic studies of ligand binding in partially liganded intermediates of hemoglobin.
    Sharma VS
    Methods Enzymol; 1994; 232():430-45. PubMed ID: 8057873
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.