These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9860972)

  • 21. Enhancing the synthetic utility of aldolase antibody 38C2.
    Mondal K; Ramesh NG; Roy I; Gupta MN
    Bioorg Med Chem Lett; 2006 Feb; 16(4):807-10. PubMed ID: 16321532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antibody-catalyzed benzoin oxidation as a mechanistic probe for nucleophilic catalysis by an active site lysine.
    Sklute G; Oizerowich R; Shulman H; Keinan E
    Chemistry; 2004 May; 10(9):2159-65. PubMed ID: 15112204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo activity in a catalytic antibody-prodrug system: Antibody catalyzed etoposide prodrug activation for selective chemotherapy.
    Shabat D; Lode HN; Pertl U; Reisfeld RA; Rader C; Lerner RA; Barbas CF
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7528-33. PubMed ID: 11404472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amperometric assay for aldolase activity: antibody-catalyzed ferrocenylamine formation.
    Sagi A; Rishpon J; Shabat D
    Anal Chem; 2006 Mar; 78(5):1459-61. PubMed ID: 16503594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using the process of reactive immunization to induce catalytic antibodies with complex mechanisms: aldolases.
    Lerner RA; Barbas CF
    Acta Chem Scand (Cph); 1996 Aug; 50(8):672-8. PubMed ID: 8756355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Substrate-selective mechanisms in biocatalysis demonstrated with a versatile and efficient aldolase antibody.
    Shulman H; Keinan E
    Bioorg Med Chem Lett; 1999 Jul; 9(13):1745-50. PubMed ID: 10406635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. D-Fructose-6-phosphate aldolase-catalyzed one-pot synthesis of iminocyclitols.
    Sugiyama M; Hong Z; Liang PH; Dean SM; Whalen LJ; Greenberg WA; Wong CH
    J Am Chem Soc; 2007 Nov; 129(47):14811-7. PubMed ID: 17985886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of aldolase-based catalysts for the synthesis of organic chemicals.
    Lee SH; Yeom SJ; Kim SE; Oh DK
    Trends Biotechnol; 2022 Mar; 40(3):306-319. PubMed ID: 34462144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A cofactor approach to copper-dependent catalytic antibodies.
    Nicholas KM; Wentworth P; Harwig CW; Wentworth AD; Shafton A; Janda KD
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2648-53. PubMed ID: 11880619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A QM/MM study on the origin of retro-aldolase activity of a catalytic antibody.
    De Raffele D; Martí S; Moliner V
    Chem Commun (Camb); 2021 May; 57(43):5306-5309. PubMed ID: 33912877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering stereocontrol into an aldolase-catalysed reaction.
    Lamble HJ; Danson MJ; Hough DW; Bull SD
    Chem Commun (Camb); 2005 Jan; (1):124-6. PubMed ID: 15614394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel catalytic property of fructose-6-phosphate aldolase in directly conversion of two 1-hydroxyalkanones to diketones.
    Ren C; Yang J; Zeng Y; Zhang T; Tian C; Men Y; Sun Y
    Enzyme Microb Technol; 2021 Jun; 147():109784. PubMed ID: 33992412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mimicking fructose and rhamnulose aldolases: organocatalytic syn-aldol reactions with unprotected dihydroxyacetone.
    Ramasastry SS; Albertshofer K; Utsumi N; Tanaka F; Barbas CF
    Angew Chem Int Ed Engl; 2007; 46(29):5572-5. PubMed ID: 17577894
    [No Abstract]   [Full Text] [Related]  

  • 34. Fluorogenic polypropionate fragments for detecting stereoselective aldolases.
    Pérez Carlón R; Jourdain N; Reymond JL
    Chemistry; 2000 Nov; 6(22):4154-62. PubMed ID: 11128279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mimicking aldolases through organocatalysis: syn-selective aldol reactions with protected dihydroxyacetone.
    Utsumi N; Imai M; Tanaka F; Ramasastry SS; Barbas CF
    Org Lett; 2007 Aug; 9(17):3445-8. PubMed ID: 17645352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potent inhibition of HIV-1 entry with a chemically programmed antibody aided by an efficient organocatalytic synthesis.
    Gavrilyuk J; Uehara H; Otsubo N; Hessell A; Burton DR; Barbas CF
    Chembiochem; 2010 Oct; 11(15):2113-8. PubMed ID: 20845359
    [No Abstract]   [Full Text] [Related]  

  • 37. [Peculiarities of the Mechanism of Interactions of Catalytic Antibodies with Organophosphorus Substrates].
    Mokrushina YA; Pipiya SO; Stepanova AV; Shamborant OG; Knorre VD; Smirnov IV; Gabibov AG; Vorobiev II
    Mol Biol (Mosk); 2017; 51(6):958-968. PubMed ID: 29271960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New Stereoselective Biocatalysts for Carboligation and Retro-Aldol Cleavage Reactions Derived from d-Fructose 6-Phosphate Aldolase.
    Ma H; Engel S; Enugala TR; Al-Smadi D; Gautier C; Widersten M
    Biochemistry; 2018 Oct; 57(40):5877-5885. PubMed ID: 30204427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Snapshots of catalysis: the structure of fructose-1,6-(bis)phosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate.
    Choi KH; Shi J; Hopkins CE; Tolan DR; Allen KN
    Biochemistry; 2001 Nov; 40(46):13868-75. PubMed ID: 11705376
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of protein, peptide, and small molecule catalysts using catalysis-based selection strategies.
    Tanaka F
    Chem Rec; 2005; 5(5):276-85. PubMed ID: 16211623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.