These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 9860985)

  • 1. From patterns to processes: phase and density dependencies in the Canadian lynx cycle.
    Stenseth NC; Falck W; Chan KS; Bjørnstad ON; O'Donoghue M; Tong H; Boonstra R; Boutin S; Krebs CJ; Yoccoz NG
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15430-5. PubMed ID: 9860985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population regulation in snowshoe hare and Canadian lynx: asymmetric food web configurations between hare and lynx.
    Stenseth NC; Falck W; Bjornstad ON; Krebs CJ
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5147-52. PubMed ID: 9144205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geographical gradients in diet affect population dynamics of Canada lynx.
    Roth JD; Marshall JD; Murray DL; Nickerson DM; Steury TD
    Ecology; 2007 Nov; 88(11):2736-43. PubMed ID: 18051641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using experimentation to understand the 10-year snowshoe hare cycle in the boreal forest of North America.
    Krebs CJ; Boonstra R; Boutin S
    J Anim Ecol; 2018 Jan; 87(1):87-100. PubMed ID: 28636751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking climate change to population cycles of hares and lynx.
    Yan C; Stenseth NC; Krebs CJ; Zhang Z
    Glob Chang Biol; 2013 Nov; 19(11):3263-71. PubMed ID: 23846828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Snow conditions may create an invisible barrier for lynx.
    Stenseth NC; Shabbar A; Chan KS; Boutin S; Rueness EK; Ehrich D; Hurrell JW; Lingjaerde OC; Jakobsen KS
    Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10632-4. PubMed ID: 15249676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Inverse Problem: Trappers Drove Hares to Eat Lynx.
    Deng B
    Acta Biotheor; 2018 Sep; 66(3):213-242. PubMed ID: 29846858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the assessment of predator functional responses by considering alternate prey and predator interactions.
    Chan K; Boutin S; Hossie TJ; Krebs CJ; O'Donoghue M; Murray DL
    Ecology; 2017 Jul; 98(7):1787-1796. PubMed ID: 28369822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients.
    Elmhagen B; Ludwig G; Rushton SP; Helle P; Lindén H
    J Anim Ecol; 2010 Jul; 79(4):785-94. PubMed ID: 20337755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of variable predation risk on stress in snowshoe hares over the cycle in North America's boreal forest: adjusting to change.
    Lavergne SG; Krebs CJ; Kenney AJ; Boutin S; Murray D; Palme R; Boonstra R
    Oecologia; 2021 Sep; 197(1):71-88. PubMed ID: 34435235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecological and genetic spatial structuring in the Canadian lynx.
    Rueness EK; Stenseth NC; O'Donoghue M; Boutin S; Ellegren H; Jakobsen KS
    Nature; 2003 Sep; 425(6953):69-72. PubMed ID: 12955141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demography of snowshoe hare population cycles.
    Oli MK; Krebs CJ; Kenney AJ; Boonstra R; Boutin S; Hines JE
    Ecology; 2020 Mar; 101(3):e02969. PubMed ID: 31922605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Top-down and bottom-up effects modulate species co-existence in a context of top predator restoration.
    Burgos T; Salesa J; Fedriani JM; Escribano-Ávila G; Jiménez J; Krofel M; Cancio I; Hernández-Hernández J; Rodríguez-Siles J; Virgós E
    Sci Rep; 2023 Mar; 13(1):4170. PubMed ID: 36914804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of predator maturation delay and functional response in determining the periodicity of predator-prey cycles.
    Wang H; Nagy JD; Gilg O; Kuang Y
    Math Biosci; 2009 Sep; 221(1):1-10. PubMed ID: 19563815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic resonance in climate reddening increases the risk of cyclic ecosystem extinction via phase-tipping.
    Alkhayuon H; Marley J; Wieczorek S; Tyson RC
    Glob Chang Biol; 2023 Jun; 29(12):3347-3363. PubMed ID: 37021593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing species distribution modeling by characterizing predator-prey interactions.
    Trainor AM; Schmitz OJ; Ivan JS; Shenk TM
    Ecol Appl; 2014 Jan; 24(1):204-16. PubMed ID: 24640545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demographic differences in diet breadth of Canada lynx during a fluctuation in prey availability.
    Burstahler CM; Roth JD; Gau RJ; Murray DL
    Ecol Evol; 2016 Sep; 6(17):6366-75. PubMed ID: 27648249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Landscape location affects genetic variation of Canada lynx (Lynx canadensis).
    Schwartz MK; Mills LS; Ortega Y; Ruggiero LF; Allendorf FW
    Mol Ecol; 2003 Jul; 12(7):1807-16. PubMed ID: 12803633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of circular single-stranded DNA viruses in faecal samples of Canada lynx (Lynx canadensis), moose (Alces alces) and snowshoe hare (Lepus americanus) inhabiting the Colorado San Juan Mountains.
    Kraberger S; Waits K; Ivan J; Newkirk E; VandeWoude S; Varsani A
    Infect Genet Evol; 2018 Oct; 64():1-8. PubMed ID: 29879480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predators choose prey over prey habitats: evidence from a lynx-hare system.
    Keim JL; DeWitt PD; Lele SR
    Ecol Appl; 2011 Jun; 21(4):1011-6. PubMed ID: 21774407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.