These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1054 related articles for article (PubMed ID: 9861628)
1. Interaction of cholecystokinin (CCK-33) and its C-terminal fragments: CCK-8 and CCK-4 with alpha- and beta-adrenoceptor agonists and antagonists in the cardiovascular system of rats. Part A. Wiśniewska RJ Pol J Pharmacol; 1998; 50(3):203-12. PubMed ID: 9861628 [TBL] [Abstract][Full Text] [Related]
2. Interaction of cholecystokinin (CCK-33) and its C-terminal fragments: CCK-8 and CCK-4 with alpha- and beta-adrenoceptor agonists and antagonists in the cardiovascular system of diabetic rats. Part B. Wiśniewska RJ Pol J Pharmacol; 1998; 50(3):213-23. PubMed ID: 9861629 [TBL] [Abstract][Full Text] [Related]
3. Interaction of cholecystokinin (CCK-8) with agonist and antagonist of beta-adrenergic receptors in circulatory system of diabetic rats. Wiśniewska RJ; Wiśniewski K Pol J Pharmacol; 1996; 48(3):293-7. PubMed ID: 9112665 [TBL] [Abstract][Full Text] [Related]
4. The interaction of cholecystokinin and its fragments with norepinephrine in the circulatory system of diabetic rats. Fiedorowicz RJ; Wiśniewski K Pol J Pharmacol Pharm; 1989; 41(6):573-83. PubMed ID: 2577226 [TBL] [Abstract][Full Text] [Related]
5. Effects of cholecystokinin (CCK-33) and its fragments, C-terminal octapeptide (CCK-8) and C-terminal tetrapeptide (CCK-4), on the circulatory system of diabetic rats. Fiedorowicz RJ; Wiśniewski K Pol J Pharmacol Pharm; 1989; 41(6):561-72. PubMed ID: 2485904 [TBL] [Abstract][Full Text] [Related]
6. Adrenergic receptors in the nucleus accumbens shell differentially modulate dopamine and acetylcholine receptor-mediated turning behaviour. Ikeda H; Moribe S; Sato M; Kotani A; Koshikawa N; Cools AR Eur J Pharmacol; 2007 Jan; 554(2-3):175-82. PubMed ID: 17113067 [TBL] [Abstract][Full Text] [Related]
7. The influence of C-terminal cholecystokinin fragments in the circulatory system of rats. Wiśniewska RJ; Kupryszewski G Pol J Pharmacol Pharm; 1992; 44(3):281-7. PubMed ID: 1470565 [TBL] [Abstract][Full Text] [Related]
8. The central action of drugs influencing beta-adrenergic receptor. part V. The interaction of drugs affecting beta-adrenergic receptor in motility test. Ksiaz A; Kleinrok Z Pol J Pharmacol Pharm; 1975; 27(6):595-601. PubMed ID: 1714 [TBL] [Abstract][Full Text] [Related]
9. Effect of beta-adrenoceptors on the behaviour induced by the neuropeptide glutamic acid isoleucine amide. Sánchez-Borzone ME; Attademo A; Baiardi G; Celis ME Eur J Pharmacol; 2007 Jul; 568(1-3):186-91. PubMed ID: 17537427 [TBL] [Abstract][Full Text] [Related]
10. The influence of the adrenergic drugs on the electrical responses of the rabbit isolated heart atrium. Smejkal V; Mironneau J; Ojeda C; Gargouil YM Physiol Bohemoslov; 1970; 19(1):19-22. PubMed ID: 4394505 [No Abstract] [Full Text] [Related]
11. Cardiovascular effects of tyramine: adrenergic and cholinergic interactions. Khwanchuea R; Mulvany MJ; Jansakul C Eur J Pharmacol; 2008 Jan; 579(1-3):308-17. PubMed ID: 18036584 [TBL] [Abstract][Full Text] [Related]
12. [Effects of alpha and beta blocker properties of parahydroxybenzonitrile on the cardiovascular system of rats]. Cheav SL; Kirkiacharian S; Piéri F; Poisson D Ann Pharm Fr; 1998; 56(5):205-8. PubMed ID: 9805819 [TBL] [Abstract][Full Text] [Related]
13. Effects of autonomic blockade on non-linear cardiovascular variability indices in rats. Beckers F; Verheyden B; Ramaekers D; Swynghedauw B; Aubert AE Clin Exp Pharmacol Physiol; 2006; 33(5-6):431-9. PubMed ID: 16700875 [TBL] [Abstract][Full Text] [Related]
14. Pharmacodynamic effects of a 2-piperazinotetralin (P-11)--combined alpha- and beta-adrenoceptor blocking drug with hypotensive action. Mutafova-Yambolieva V; Staneva-Stoytcheva D Methods Find Exp Clin Pharmacol; 1988 Sep; 10(9):551-7. PubMed ID: 2906393 [TBL] [Abstract][Full Text] [Related]
15. Catecholaminergic regulation of the hypothalamic-pituitary-adrenocortical activity. Bugajski J; Turoń M; Gadek-Michalska A; Borycz JA J Physiol Pharmacol; 1991 Mar; 42(1):93-103. PubMed ID: 1681965 [TBL] [Abstract][Full Text] [Related]
16. Involvement of beta-adrenoceptors in a central regulation of the ovarian progesterone release in rats. De Bortoli MA; Garraza MH; Aguado LI Neuro Endocrinol Lett; 2002 Feb; 23(1):27-31. PubMed ID: 11880859 [TBL] [Abstract][Full Text] [Related]
17. Functional involvement of vasopressin in the maintenance of systemic arterial blood pressures after phenoxybenzamine or phentolamine administration: studies in Long-Evans and Brattleboro rats. Winn MJ; Gardiner SM; Bennett T J Pharmacol Exp Ther; 1985 Nov; 235(2):500-5. PubMed ID: 2865355 [TBL] [Abstract][Full Text] [Related]
18. Neurotransmitter-mediated control of neuronal firing in the red nucleus of the rat: reciprocal modulation between noradrenaline and GABA. Ciranna L; Licata F; Li Volsi G; Santangelo F Exp Neurol; 2000 May; 163(1):253-63. PubMed ID: 10785465 [TBL] [Abstract][Full Text] [Related]
19. Modulation of myocardial alpha 1- but not beta-adrenoceptors after 90-day tail-suspension. Chen J; Zhang LF; Han C; Yu GS; Ma J J Gravit Physiol; 1996 Apr; 3(1):57-62. PubMed ID: 11539308 [TBL] [Abstract][Full Text] [Related]
20. Intrinsic cardiac neurons involved in cardiac regulation possess alpha 1-, alpha 2-, beta 1- and beta 2-adrenoceptors. Armour JA Can J Cardiol; 1997 Mar; 13(3):277-84. PubMed ID: 9117916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]