These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Absolute configuration determination of chiral molecules in the solution state using vibrational circular dichroism. Freedman TB; Cao X; Dukor RK; Nafie LA Chirality; 2003 Nov; 15(9):743-58. PubMed ID: 14556210 [TBL] [Abstract][Full Text] [Related]
3. The determination of the absolute configurations of chiral molecules using vibrational circular dichroism (VCD) spectroscopy. Stephens PJ; Devlin FJ; Pan JJ Chirality; 2008 May; 20(5):643-63. PubMed ID: 17955495 [TBL] [Abstract][Full Text] [Related]
4. Absolute configuration determination and conformational analysis of (-)-(3S,6S)-3alpha,6beta-diacetoxytropane using vibrational circular dichroism and DFT techniques. Muñoz MA; Muñoz O; Joseph-Nathan P Chirality; 2010 Feb; 22(2):234-41. PubMed ID: 19408333 [TBL] [Abstract][Full Text] [Related]
5. Assessment of configurational and conformational properties of naringenin by vibrational circular dichroism. Abbate S; Burgi LF; Castiglioni E; Lebon F; Longhi G; Toscano E; Caccamese S Chirality; 2009 Apr; 21(4):436-41. PubMed ID: 18655173 [TBL] [Abstract][Full Text] [Related]
6. Enantiomeric excess determination by fourier transform near-infrared vibrational circular dichroism spectroscopy: simulation of real-time process monitoring. Guo C; Shah RD; Dukor RK; Cao X; Freedman TB; Nafie LA Appl Spectrosc; 2005 Sep; 59(9):1114-24. PubMed ID: 16197634 [TBL] [Abstract][Full Text] [Related]
7. Determination of enantiomeric excess in samples of chiral molecules using fourier transform vibrational circular dichroism spectroscopy: simulation of real-time reaction monitoring. Guo C; Shah RD; Dukor RK; Cao X; Freedman TB; Nafie LA Anal Chem; 2004 Dec; 76(23):6956-66. PubMed ID: 15571347 [TBL] [Abstract][Full Text] [Related]
8. Determination of absolute configuration of chiral molecules using vibrational optical activity: a review. He Y; Wang B; Dukor RK; Nafie LA Appl Spectrosc; 2011 Jul; 65(7):699-723. PubMed ID: 21740631 [TBL] [Abstract][Full Text] [Related]
9. Extension of fourier transform vibrational circular dichroism into the near-infrared region: continuous spectral coverage from 800 to 10 000 cm(-1). Cao X; Shah RD; Dukor RK; Guo C; Freedman TB; Nafie LA Appl Spectrosc; 2004 Sep; 58(9):1057-64. PubMed ID: 15479522 [TBL] [Abstract][Full Text] [Related]
10. Absolute configuration and conformation analysis of 1-phenylethanol by matrix-isolation infrared and vibrational circular dichroism spectroscopy combined with density functional theory calculation. Shin-ya K; Sugeta H; Shin S; Hamada Y; Katsumoto Y; Ohno K J Phys Chem A; 2007 Sep; 111(35):8598-605. PubMed ID: 17685495 [TBL] [Abstract][Full Text] [Related]
11. Predictions of secondary structure using statistical analyses of electronic and vibrational circular dichroism and Fourier transform infrared spectra of proteins in H2O. Baumruk V; Pancoska P; Keiderling TA J Mol Biol; 1996 Jun; 259(4):774-91. PubMed ID: 8683582 [TBL] [Abstract][Full Text] [Related]
12. Vibrational circular dichroism spectroscopy of chiral molecules. Yang G; Xu Y Top Curr Chem; 2011; 298():189-236. PubMed ID: 21321803 [TBL] [Abstract][Full Text] [Related]
13. Determination of the structure of chiral molecules using ab initio vibrational circular dichroism spectroscopy. Stephens PJ; Devlin FJ Chirality; 2000 May; 12(4):172-9. PubMed ID: 10790187 [TBL] [Abstract][Full Text] [Related]
14. Fourier transform near-infrared vibrational circular dichroism used for on-line monitoring the epimerization of 2,2-dimethyl-1,3-dioxolane-4-methanol: A pseudo racemization reaction. Guo C; Shah RD; Mills J; Dukor RK; Cao X; Freedman TB; Nafie LA Chirality; 2006 Nov; 18(10):775-82. PubMed ID: 16906494 [TBL] [Abstract][Full Text] [Related]
15. Determination of the absolute configuration of chiral alpha-aryloxypropanoic acids using vibrational circular dichroism studies: 2-(2-chlorophenoxy) propanoic acid and 2-(3-chlorophenoxy) propanoic acid. He J; Polavarapu PL Spectrochim Acta A Mol Biomol Spectrosc; 2005 May; 61(7):1327-34. PubMed ID: 15820866 [TBL] [Abstract][Full Text] [Related]
16. Isotopic difference spectra as an aide in determining absolute configuration using vibrational optical activity: vibrational circular dichroism of 13C- and 2H-labelled nonamethoxy cyclotriveratrylene. Freedman TB; Cao X; Luz Z; Zimmermann H; Poupko R; Nafie LA Chirality; 2008 May; 20(5):673-80. PubMed ID: 18200587 [TBL] [Abstract][Full Text] [Related]
17. Chirality of camphor derivatives by density functional theory. Morita HE; Kodama TS; Tanaka T Chirality; 2006 Nov; 18(10):783-9. PubMed ID: 16906492 [TBL] [Abstract][Full Text] [Related]
18. Determining the absolute configuration of two marine compounds using vibrational chiroptical spectroscopy. Hopmann KH; Šebestík J; Novotná J; Stensen W; Urbanová M; Svenson J; Svendsen JS; Bouř P; Ruud K J Org Chem; 2012 Jan; 77(2):858-69. PubMed ID: 22148737 [TBL] [Abstract][Full Text] [Related]
19. Determination of molecular stereochemistry using vibrational circular dichroism spectroscopy: absolute configuration and solution conformation of 5-formyl-cis, cis-1,3,5-trimethyl-3-hydroxymethylcyclohexane-1-carboxylic acid lactone. Izumi H; Futamura S; Nafie LA; Dukor RK Chem Rec; 2003; 3(2):112-9. PubMed ID: 12731081 [TBL] [Abstract][Full Text] [Related]
20. Observation of Fourier transform near-infrared vibrational circular dichroism to 6150 cm-1. Nafie LA; Dukor RK; Roy JR; Rilling A; Cao X; Buijs H Appl Spectrosc; 2003 Oct; 57(10):1245-9. PubMed ID: 14639752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]