These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 9861982)
1. Slow stochastic Hebbian learning of classes of stimuli in a recurrent neural network. Brunel N; Carusi F; Fusi S Network; 1998 Feb; 9(1):123-52. PubMed ID: 9861982 [TBL] [Abstract][Full Text] [Related]
2. Learning viewpoint-invariant face representations from visual experience in an attractor network. Bartlett MS; Sejnowski TJ Network; 1998 Aug; 9(3):399-417. PubMed ID: 9861998 [TBL] [Abstract][Full Text] [Related]
3. A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks. Siri B; Berry H; Cessac B; Delord B; Quoy M Neural Comput; 2008 Dec; 20(12):2937-66. PubMed ID: 18624656 [TBL] [Abstract][Full Text] [Related]
4. The road to chaos by time-asymmetric Hebbian learning in recurrent neural networks. Molter C; Salihoglu U; Bersini H Neural Comput; 2007 Jan; 19(1):80-110. PubMed ID: 17134318 [TBL] [Abstract][Full Text] [Related]
5. Generalization and exclusive allocation of credit in unsupervised category learning. Marshall JA; Gupta VS Network; 1998 May; 9(2):279-302. PubMed ID: 9861990 [TBL] [Abstract][Full Text] [Related]
6. Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons. Siri B; Quoy M; Delord B; Cessac B; Berry H J Physiol Paris; 2007; 101(1-3):136-48. PubMed ID: 18042357 [TBL] [Abstract][Full Text] [Related]
7. Comparison of computational models of familiarity discrimination in the perirhinal cortex. Bogacz R; Brown MW Hippocampus; 2003; 13(4):494-524. PubMed ID: 12836918 [TBL] [Abstract][Full Text] [Related]
8. Learning transform invariant object recognition in the visual system with multiple stimuli present during training. Stringer SM; Rolls ET Neural Netw; 2008 Sep; 21(7):888-903. PubMed ID: 18440774 [TBL] [Abstract][Full Text] [Related]
9. Learning in realistic networks of spiking neurons and spike-driven plastic synapses. Mongillo G; Curti E; Romani S; Amit DJ Eur J Neurosci; 2005 Jun; 21(11):3143-60. PubMed ID: 15978023 [TBL] [Abstract][Full Text] [Related]
10. Learning attractors in an asynchronous, stochastic electronic neural network. Del Giudice P; Fusi S; Badoni D; Dante V; Amit DJ Network; 1998 May; 9(2):183-205. PubMed ID: 9861985 [TBL] [Abstract][Full Text] [Related]
12. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Brader JM; Senn W; Fusi S Neural Comput; 2007 Nov; 19(11):2881-912. PubMed ID: 17883345 [TBL] [Abstract][Full Text] [Related]
13. Eluding oblivion with smart stochastic selection of synaptic updates. Fusi S; Senn W Chaos; 2006 Jun; 16(2):026112. PubMed ID: 16822044 [TBL] [Abstract][Full Text] [Related]
14. Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates. Fusi S Biol Cybern; 2002 Dec; 87(5-6):459-70. PubMed ID: 12461635 [TBL] [Abstract][Full Text] [Related]
15. Recursive principal components analysis. Voegtlin T Neural Netw; 2005 Oct; 18(8):1051-63. PubMed ID: 16181769 [TBL] [Abstract][Full Text] [Related]
16. A Monte Carlo EM approach for partially observable diffusion processes: theory and applications to neural networks. Movellan JR; Mineiro P; Williams RJ Neural Comput; 2002 Jul; 14(7):1507-44. PubMed ID: 12079544 [TBL] [Abstract][Full Text] [Related]
17. Learning only when necessary: better memories of correlated patterns in networks with bounded synapses. Senn W; Fusi S Neural Comput; 2005 Oct; 17(10):2106-38. PubMed ID: 16105220 [TBL] [Abstract][Full Text] [Related]