These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 9862126)

  • 21. Comparison of 15N- and 13C-determined parameters of mobility in melittin.
    Zhu L; Prendergast FG; Kemple MD
    J Biomol NMR; 1998 Jul; 12(1):135-44. PubMed ID: 9729793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative analysis of backbone motion in proteins using MAS solid-state NMR spectroscopy.
    Chevelkov V; Fink U; Reif B
    J Biomol NMR; 2009 Sep; 45(1-2):197-206. PubMed ID: 19629713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variability of the 15N chemical shielding tensors in the B3 domain of protein G from 15N relaxation measurements at several fields. Implications for backbone order parameters.
    Hall JB; Fushman D
    J Am Chem Soc; 2006 Jun; 128(24):7855-70. PubMed ID: 16771499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 13C-NMR relaxation in three DNA oligonucleotide duplexes: model-free analysis of internal and overall motion.
    Borer PN; LaPlante SR; Kumar A; Zanatta N; Martin A; Hakkinen A; Levy GC
    Biochemistry; 1994 Mar; 33(9):2441-50. PubMed ID: 8117704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human type-alpha transforming growth factor undergoes slow conformational exchange between multiple backbone conformations as characterized by nitrogen-15 relaxation measurements.
    Li YC; Montelione GT
    Biochemistry; 1995 Feb; 34(8):2408-23. PubMed ID: 7873520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationships between protein structure and dynamics from a database of NMR-derived backbone order parameters.
    Goodman JL; Pagel MD; Stone MJ
    J Mol Biol; 2000 Jan; 295(4):963-78. PubMed ID: 10656804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 13C relaxation and dynamics of the purine bases in the iron responsive element RNA hairpin.
    Hall KB; Tang C
    Biochemistry; 1998 Jun; 37(26):9323-32. PubMed ID: 9649313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of methyl rotation axis order parameters derived from model-free analyses of (2)H and (13)C longitudinal and transverse relaxation rates measured in the same protein sample.
    Ishima R; Petkova AP; Louis JM; Torchia DA
    J Am Chem Soc; 2001 Jun; 123(25):6164-71. PubMed ID: 11414851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamical characterization of residual and non-native structures in a partially folded protein by (15)N NMR relaxation using a model based on a distribution of correlation times.
    Ochsenbein F; Neumann JM; Guittet E; van Heijenoort C
    Protein Sci; 2002 Apr; 11(4):957-64. PubMed ID: 11910038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Backbone dynamics of a bacterially expressed peptide from the receptor binding domain of Pseudomonas aeruginosa pilin strain PAK from heteronuclear 1H-15N NMR spectroscopy.
    Campbell AP; Spyracopoulos L; Irvin RT; Sykes BD
    J Biomol NMR; 2000 Jul; 17(3):239-55. PubMed ID: 10959631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy.
    Orekhov VYu ; Pervushin KV; Arseniev AS
    Eur J Biochem; 1994 Feb; 219(3):887-96. PubMed ID: 8112340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reducing bias in the analysis of solution-state NMR data with dynamics detectors.
    Smith AA; Ernst M; Meier BH; Ferrage F
    J Chem Phys; 2019 Jul; 151(3):034102. PubMed ID: 31325945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 13C NMR relaxation studies of molecular motion in peptide fragments from human transthyretin.
    Jarvis JA; Craik DJ
    J Magn Reson B; 1995 May; 107(2):95-106. PubMed ID: 7599954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Internal motions of apo-neocarzinostatin as studied by 13C NMR methine relaxation at natural abundance.
    Mispelter J; Lefèvre C; Adjadj E; Quiniou E; Favaudon V
    J Biomol NMR; 1995 Apr; 5(3):233-44. PubMed ID: 7787421
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Lipari-Szabo Model-Free Analysis as a Method for Study of Molecular Motion in Solid State Heteronuclear Systems Using NMR Off-Resonance.
    Woźniak-Braszak A; Jurga K; Baranowski M
    Appl Magn Reson; 2016; 47():567-574. PubMed ID: 27340336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Backbone dynamics of a model membrane protein: 13C NMR spectroscopy of alanine methyl groups in detergent-solubilized M13 coat protein.
    Henry GD; Weiner JH; Sykes BD
    Biochemistry; 1986 Feb; 25(3):590-8. PubMed ID: 3513830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simple and accurate determination of global tau(R) in proteins using (13)C or (15)N relaxation data.
    Mispelter J; Izadi-Pruneyre N; Quiniou E; Adjadj E
    J Magn Reson; 2000 Mar; 143(1):229-32. PubMed ID: 10698665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model selection for the interpretation of protein side chain methyl dynamics.
    Choy WY; Kay LE
    J Biomol NMR; 2003 Apr; 25(4):325-33. PubMed ID: 12766394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Backbone dynamics of the 269-residue protease Savinase determined from 15N-NMR relaxation measurements.
    Remerowski ML; Pepermans HA; Hilbers CW; Van De Ven FJ
    Eur J Biochem; 1996 Feb; 235(3):629-40. PubMed ID: 8654411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. What NMR Relaxation Can Tell Us about the Internal Motion of an RNA Hairpin:  A Molecular Dynamics Simulation Study.
    Villa A; Stock G
    J Chem Theory Comput; 2006 Sep; 2(5):1228-36. PubMed ID: 26626832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.