These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 9862491)
1. Cortical tissue-specific accumulation of the root-specific ns-LTP transcripts in the bean (Phaseolus vulgaris) seedlings. Song JY; Choi DW; Lee JS; Kwon YM; Kim SG Plant Mol Biol; 1998 Nov; 38(5):735-42. PubMed ID: 9862491 [TBL] [Abstract][Full Text] [Related]
2. Isolation of a root-specific cDNA encoding a ns-LTP-like protein from the roots of bean (Phaseolus vulgaris L.) seedlings. Choi DW; Song JY; Oh MH; Lee JS; Moon J; Suh SW; Kim SG Plant Mol Biol; 1996 Mar; 30(5):1059-66. PubMed ID: 8639743 [TBL] [Abstract][Full Text] [Related]
3. Characterization of a cDNA encoding a proline-rich 14 kDa protein in developing cortical cells of the roots of bean (Phaseolus vulgaris) seedlings. Choi DW; Song JY; Kwon YM; Kim SG Plant Mol Biol; 1996 Mar; 30(5):973-82. PubMed ID: 8639755 [TBL] [Abstract][Full Text] [Related]
4. Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Yi HC; Joo S; Nam KH; Lee JS; Kang BG; Kim WT Plant Mol Biol; 1999 Nov; 41(4):443-54. PubMed ID: 10608655 [TBL] [Abstract][Full Text] [Related]
5. Differential accumulation of the mRNA of the auxin-repressed gene CsGRP1 and the auxin-induced peg formation during gravimorphogenesis of cucumber seedlings. Shimizu M; Suzuki K; Miyazawa Y; Fujii N; Takahashi H Planta; 2006 Dec; 225(1):13-22. PubMed ID: 16773375 [TBL] [Abstract][Full Text] [Related]
6. Targeting and release of phytohemagglutinin from the roots of bean seedlings. Kjemtrup S; Borkhsenious O; Raikhel NV; Chrispeels MJ Plant Physiol; 1995 Oct; 109(2):603-10. PubMed ID: 7480348 [TBL] [Abstract][Full Text] [Related]
7. Genome-Wide Identification of Common Bean Dong X; Zhu H; Hao X; Wang Y; Ma X; Zhao J; Chang J Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553661 [TBL] [Abstract][Full Text] [Related]
8. Spatial-temporal analysis of polyethylene glycol-reduced aluminium accumulation and xyloglucan endotransglucosylase action in root tips of common bean (Phaseolus vulgaris). Zhang M; Ma Y; Horst WJ; Yang ZB Ann Bot; 2016 Jul; 118(1):1-9. PubMed ID: 27106549 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of cDNA clones corresponding with mRNAs that accumulate during auxin-induced lateral root formation. Neuteboom LW; Ng JM; Kuyper M; Clijdesdale OR; Hooykaas PJ; van der Zaal BJ Plant Mol Biol; 1999 Jan; 39(2):273-87. PubMed ID: 10080694 [TBL] [Abstract][Full Text] [Related]
10. Vascular tissue-specific gene expression of xylem sap glycine-rich proteins in root and their localization in the walls of metaxylem vessels in cucumber. Sakuta C; Satoh S Plant Cell Physiol; 2000 May; 41(5):627-38. PubMed ID: 10929946 [TBL] [Abstract][Full Text] [Related]
11. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. Bonser AM; Lynch J; Snapp S New Phytol; 1996 Feb; 132(2):281-8. PubMed ID: 11541132 [TBL] [Abstract][Full Text] [Related]
12. Expression pattern of uricase II gene during root nodule development in Phaseolus vulgaris. Papadopoulou K; Roussis A; Kuin H; Katinakis P Experientia; 1995 Jan; 51(1):90-4. PubMed ID: 7843336 [TBL] [Abstract][Full Text] [Related]
13. Downstream DNA sequences are required to modulate Pvlea-18 gene expression in response to dehydration. Moreno-Fonseca LP; Covarrubias AA Plant Mol Biol; 2001 Mar; 45(5):501-15. PubMed ID: 11414610 [TBL] [Abstract][Full Text] [Related]
14. Bean ribonuclease-like pathogenesis-related protein genes (Ypr10) display complex patterns of developmental, dark-induced and exogenous-stimulus-dependent expression. Walter MH; Liu JW; Wünn J; Hess D Eur J Biochem; 1996 Jul; 239(2):281-93. PubMed ID: 8706731 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: identification of a novel late embryogenesis abundant-like protein. Colmenero-Flores JM; Campos F; Garciarrubio A; Covarrubias AA Plant Mol Biol; 1997 Nov; 35(4):393-405. PubMed ID: 9349263 [TBL] [Abstract][Full Text] [Related]
16. Pvlea-18, a member of a new late-embryogenesis-abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings. Colmenero-Flores JM; Moreno LP; Smith CE; Covarrubias AA Plant Physiol; 1999 May; 120(1):93-104. PubMed ID: 10318687 [TBL] [Abstract][Full Text] [Related]
17. Auxin Efflux Carrier ZmPGP1 Mediates Root Growth Inhibition under Aluminum Stress. Zhang M; Lu X; Li C; Zhang B; Zhang C; Zhang XS; Ding Z Plant Physiol; 2018 Jun; 177(2):819-832. PubMed ID: 29720555 [TBL] [Abstract][Full Text] [Related]
18. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.). Zhao H; Ma T; Wang X; Deng Y; Ma H; Zhang R; Zhao J Plant Cell Environ; 2015 Nov; 38(11):2208-22. PubMed ID: 25311360 [TBL] [Abstract][Full Text] [Related]
19. Phaseolus ENOD40 is involved in symbiotic and non-symbiotic organogenetic processes: expression during nodule and lateral root development. Papadopoulou K; Roussis A; Katinakis P Plant Mol Biol; 1996 Feb; 30(3):403-17. PubMed ID: 8605294 [TBL] [Abstract][Full Text] [Related]
20. Differential accumulation of Aux/IAA mRNA during seedling development and gravity response in cucumber (Cucumis sativus L.). Fujii N; Kamada M; Yamasaki S; Takahashi H Plant Mol Biol; 2000 Mar; 42(5):731-40. PubMed ID: 10809445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]