BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1301 related articles for article (PubMed ID: 9862905)

  • 41. Voltage-dependent ionic currents in solitary horizontal cells isolated from cat retina.
    Ueda Y; Kaneko A; Kaneda M
    J Neurophysiol; 1992 Oct; 68(4):1143-50. PubMed ID: 1279133
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Parapodial swim muscle in Aplysia brasiliana. I. Voltage-gated membrane currents in isolated muscle fibers.
    Laurienti PJ; Blankenship JE
    J Neurophysiol; 1996 Sep; 76(3):1517-30. PubMed ID: 8890271
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Potassium currents and membrane excitability of neurons in the rat's dorsal nucleus of the lateral lemniscus.
    Fu XW; Wu SH; Brezden BL; Kelly JB
    J Neurophysiol; 1996 Aug; 76(2):1121-32. PubMed ID: 8871225
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Na(+)-activated K+ channels and voltage-evoked ionic currents in brain stem and parasympathetic neurones of the chick.
    Dryer SE
    J Physiol; 1991 Apr; 435():513-32. PubMed ID: 1770447
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Potential-gated currents in isolated spinal cord neurons of the river lamprey Lampetra fluviatilis].
    Batueva IV; Tsvetkov EA; Buchanan JT; Veselkin NP
    Zh Evol Biokhim Fiziol; 1996; 32(3):267-83. PubMed ID: 9148614
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of Liuwei Dihuang decoction on ion channels and synaptic transmission in cultured hippocampal neuron of rat.
    Yang S; Zhou W; Zhang Y; Yan C; Zhao Y
    J Ethnopharmacol; 2006 Jun; 106(2):166-72. PubMed ID: 16442252
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Voltage-gated and Ca2+-activated conductances mediating and controlling graded electrical activity in crayfish muscle.
    Araque A; Marchand A; Buño W
    J Neurophysiol; 1998 May; 79(5):2338-44. PubMed ID: 9582209
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Parapodial swim muscle in Aplysia brasiliana. II. Ca(2+)-dependent K+ currents in isolated muscle fibers and their blockade by chloride substitutes.
    Laurienti PJ; Blankenship JE
    J Neurophysiol; 1996 Sep; 76(3):1531-9. PubMed ID: 8890272
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The synergistic inhibitory actions of oxcarbazepine on voltage-gated sodium and potassium currents in differentiated NG108-15 neuronal cells and model neurons.
    Huang CW; Huang CC; Lin MW; Tsai JJ; Wu SN
    Int J Neuropsychopharmacol; 2008 Aug; 11(5):597-610. PubMed ID: 18184444
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction of calcium-permeable non-N-methyl-D-aspartate receptor channels with voltage-activated potassium and calcium currents in rat retinal ganglion cells in vitro.
    Taschenberger H; Grantyn R
    Neuroscience; 1998 Jun; 84(3):877-96. PubMed ID: 9579791
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of aluminum chloride on sodium current, transient outward potassium current and delayed rectifier potassium current in acutely isolated rat hippocampal CA1 neurons.
    Zhang B; Nie A; Bai W; Meng Z
    Food Chem Toxicol; 2004 Sep; 42(9):1453-62. PubMed ID: 15234075
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of ruthenium red on membrane ionic currents in urinary bladder smooth muscle cells of the guinea-pig.
    Hirano M; Imaizumi Y; Muraki K; Yamada A; Watanabe M
    Pflugers Arch; 1998 Apr; 435(5):645-53. PubMed ID: 9479017
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ionic mechanisms underlying the firing properties of rat neonatal motoneurons studied in vitro.
    Walton K; Fulton BP
    Neuroscience; 1986 Nov; 19(3):669-83. PubMed ID: 2432443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons.
    Magee JC; Carruth M
    J Neurophysiol; 1999 Oct; 82(4):1895-901. PubMed ID: 10515978
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differentiation of ionic currents in CNS progenitor cells: dependence upon substrate attachment and epidermal growth factor.
    Feldman DH; Thinschmidt JS; Peel AL; Papke RL; Reier PJ
    Exp Neurol; 1996 Aug; 140(2):206-17. PubMed ID: 8690063
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contribution of potassium conductances to a time-dependent transition in electrical properties of a cockroach motoneuron soma.
    Mills JD; Pitman RM
    J Neurophysiol; 1999 May; 81(5):2253-66. PubMed ID: 10322064
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Specific distribution of sodium channels in axons of rat embryo spinal motoneurones.
    Alessandri-Haber N; Paillart C; Arsac C; Gola M; Couraud F; Crest M
    J Physiol; 1999 Jul; 518(Pt 1):203-14. PubMed ID: 10373702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Excitable properties and underlying Na+ and K+ currents in neurons from the guinea-pig jugular ganglion.
    Christian EP; Togo JA
    J Auton Nerv Syst; 1995 Dec; 56(1-2):75-86. PubMed ID: 8786283
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Calcium-independent depolarization-activated potassium currents in superior colliculus-projecting rat visual cortical neurons.
    Albert JL; Nerbonne JM
    J Neurophysiol; 1995 Jun; 73(6):2163-78. PubMed ID: 7666130
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The differentiation of excitability in embryonic chick limb motoneurons.
    McCobb DP; Best PM; Beam KG
    J Neurosci; 1990 Sep; 10(9):2974-84. PubMed ID: 2168941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 66.