These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 9862912)
1. Reconfiguration of the respiratory network at the onset of locust flight. Ramirez JM J Neurophysiol; 1998 Dec; 80(6):3137-47. PubMed ID: 9862912 [TBL] [Abstract][Full Text] [Related]
2. Interneurons in the flight system of the locust: distribution, connections, and resetting properties. Robertson RM; Pearson KG J Comp Neurol; 1983 Mar; 215(1):33-50. PubMed ID: 6853764 [TBL] [Abstract][Full Text] [Related]
3. Flight-initiating interneurons in the locust. Pearson KG; Reye DN; Parsons DW; Bicker G J Neurophysiol; 1985 Apr; 53(4):910-25. PubMed ID: 3998797 [TBL] [Abstract][Full Text] [Related]
4. Integration of nonphaselocked exteroceptive information in the control of rhythmic flight in the locust. Reichert H; Rowell CH J Neurophysiol; 1985 May; 53(5):1201-18. PubMed ID: 2987432 [TBL] [Abstract][Full Text] [Related]
5. Alteration of bursting properties in interneurons during locust flight. Ramirez JM; Pearson KG J Neurophysiol; 1993 Nov; 70(5):2148-60. PubMed ID: 8294976 [TBL] [Abstract][Full Text] [Related]
6. Plasticity of synaptic connections in sensory-motor pathways of the adult locust flight system. Wolf H; Büschges A J Neurophysiol; 1997 Sep; 78(3):1276-84. PubMed ID: 9310419 [TBL] [Abstract][Full Text] [Related]
7. Rhythmic modulation of the responsiveness of locust sensory local interneurons by walking pattern generating networks. Wolf H; Laurent G J Neurophysiol; 1994 Jan; 71(1):110-8. PubMed ID: 8158223 [TBL] [Abstract][Full Text] [Related]
8. Generation of motor patterns for walking and flight in motoneurons supplying bifunctional muscles in the locust. Ramirez JM; Pearson KG J Neurobiol; 1988 Apr; 19(3):257-82. PubMed ID: 3373206 [TBL] [Abstract][Full Text] [Related]
9. Multiple feedback loops in the flying cockroach: excitation of the dorsal and inhibition of the ventral giant interneurons. Libersat F; Levy A; Camhi JM J Comp Physiol A; 1989 Sep; 165(5):651-68. PubMed ID: 2795498 [TBL] [Abstract][Full Text] [Related]
10. Neural circuits in the flight system of the locust. Robertson RM; Pearson KG J Neurophysiol; 1985 Jan; 53(1):110-28. PubMed ID: 2983035 [TBL] [Abstract][Full Text] [Related]
11. Octopaminergic modulation of interneurons in the flight system of the locust. Ramirez JM; Pearson KG J Neurophysiol; 1991 Nov; 66(5):1522-37. PubMed ID: 1765792 [TBL] [Abstract][Full Text] [Related]
12. Neural correlates to flight-related density-dependent phase characteristics in locusts. Fuchs E; Kutsch W; Ayali A J Neurobiol; 2003 Nov; 57(2):152-62. PubMed ID: 14556281 [TBL] [Abstract][Full Text] [Related]
13. Interactions of suboesophageal ganglion and frontal ganglion motor patterns in the locust. Rand D; Gueijman A; Zilberstein Y; Ayali A J Insect Physiol; 2008 May; 54(5):854-60. PubMed ID: 18472107 [TBL] [Abstract][Full Text] [Related]
14. Recruitment of a projection neuron determines gastric mill motor pattern selection in the stomatogastric nervous system of the crab, Cancer borealis. Norris BJ; Coleman MJ; Nusbaum MP J Neurophysiol; 1994 Oct; 72(4):1451-63. PubMed ID: 7823079 [TBL] [Abstract][Full Text] [Related]
15. Heat shock protects synaptic transmission in flight motor circuitry of locusts. Dawson-Scully K; Meldrum Robertson R Neuroreport; 1998 Aug; 9(11):2589-93. PubMed ID: 9721938 [TBL] [Abstract][Full Text] [Related]
16. Connections of the forewing tegulae in the locust flight system and their modification following partial deafferentation. Büschges A; Ramirez JM; Driesang R; Pearson KG J Neurobiol; 1992 Feb; 23(1):44-60. PubMed ID: 1373440 [TBL] [Abstract][Full Text] [Related]
17. A cephalothoracic command system controls stridulation in the acridid grasshopper Omocestus viridulus L. Hedwig B J Neurophysiol; 1994 Oct; 72(4):2015-25. PubMed ID: 7823115 [TBL] [Abstract][Full Text] [Related]
18. Projections of the wing stretch receptors to central flight neurons in the locust. Reye DN; Pearson KG J Neurosci; 1987 Aug; 7(8):2476-87. PubMed ID: 3612248 [TBL] [Abstract][Full Text] [Related]
19. [Transmitter-dependent involvement of the respiratory interneurons in the locomotor rhythm in the pulmonate mollusc Lymnaea]. Sakharov DA; Tsyganov VV Ross Fiziol Zh Im I M Sechenova; 1998 Oct; 84(10):1029-37. PubMed ID: 10097270 [TBL] [Abstract][Full Text] [Related]
20. Motoneurons of the flight power muscles of the blowfly Calliphora erythrocephala: structures and mutual dye coupling. Schlurmann M; Hausen K J Comp Neurol; 2007 Jan; 500(3):448-64. PubMed ID: 17120285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]