These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 9862914)

  • 1. Transmitter concentration at a three-dimensional synapse.
    Rao-Mirotznik R; Buchsbaum G; Sterling P
    J Neurophysiol; 1998 Dec; 80(6):3163-72. PubMed ID: 9862914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rate of quantal transmitter release at the mammalian rod synapse.
    Rao R; Buchsbaum G; Sterling P
    Biophys J; 1994 Jul; 67(1):57-63. PubMed ID: 7919023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmitter concentration profiles in the synaptic cleft: an analytical model of release and diffusion.
    Kleinle J; Vogt K; Lüscher HR; Müller L; Senn W; Wyler K; Streit J
    Biophys J; 1996 Nov; 71(5):2413-26. PubMed ID: 8913582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel processing in two transmitter microenvironments at the cone photoreceptor synapse.
    DeVries SH; Li W; Saszik S
    Neuron; 2006 Jun; 50(5):735-48. PubMed ID: 16731512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons.
    Smith MA; Ellis-Davies GC; Magee JC
    J Physiol; 2003 Apr; 548(Pt 1):245-58. PubMed ID: 12598591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian rod terminal: architecture of a binary synapse.
    Rao-Mirotznik R; Harkins AB; Buchsbaum G; Sterling P
    Neuron; 1995 Mar; 14(3):561-9. PubMed ID: 7695902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release.
    Cooper RL; Winslow JL; Govind CK; Atwood HL
    J Neurophysiol; 1996 Jun; 75(6):2451-66. PubMed ID: 8793756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites.
    Otis TS; Wu YC; Trussell LO
    J Neurosci; 1996 Mar; 16(5):1634-44. PubMed ID: 8774432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte carlo simulation of vesicular release, spatiotemporal distribution of glutamate in synaptic cleft and generation of postsynaptic currents.
    Glavinovíc MI
    Pflugers Arch; 1999 Feb; 437(3):462-70. PubMed ID: 9914404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct quantal features of AMPA and NMDA synaptic currents in hippocampal neurons: implication of glutamate spillover and receptor saturation.
    Pankratov YV; Krishtal OA
    Biophys J; 2003 Nov; 85(5):3375-87. PubMed ID: 14581239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells.
    Kinney GA; Overstreet LS; Slater NT
    J Neurophysiol; 1997 Sep; 78(3):1320-33. PubMed ID: 9310423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of transmission at a giant glutamatergic synapse in cerebellum: the mossy fiber-unipolar brush cell synapse.
    Rossi DJ; Alford S; Mugnaini E; Slater NT
    J Neurophysiol; 1995 Jul; 74(1):24-42. PubMed ID: 7472327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of geometrical parameters on synaptic transmission: a Monte Carlo simulation study.
    Kruk PJ; Korn H; Faber DS
    Biophys J; 1997 Dec; 73(6):2874-90. PubMed ID: 9414202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamate transporter EAAT4 in Purkinje cells controls intersynaptic diffusion of climbing fiber transmitter mediating inhibition of GABA release from interneurons.
    Satake S; Song SY; Konishi S; Imoto K
    Eur J Neurosci; 2010 Dec; 32(11):1843-53. PubMed ID: 21070388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of glutamate spillover on the N-methyl-D-aspartate receptors at the cerebellar glomerulus.
    Mitchell CS; Feng SS; Lee RH
    J Neural Eng; 2007 Sep; 4(3):276-82. PubMed ID: 17873430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical description of the activation of multi-state receptors by continuous neurotransmitter signals at brain synapses.
    Uteshev VV; Pennefather PS
    Biophys J; 1997 Mar; 72(3):1127-34. PubMed ID: 9138560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realistic modelling of receptor activation in hippocampal excitatory synapses: analysis of multivesicular release, release location, temperature and synaptic cross-talk.
    Boucher J; Kröger H; Sík A
    Brain Struct Funct; 2010 Jul; 215(1):49-65. PubMed ID: 20526850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses.
    Tyler WJ; Pozzo-Miller LD
    J Neurosci; 2001 Jun; 21(12):4249-58. PubMed ID: 11404410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors.
    Chávez AE; Singer JH; Diamond JS
    Nature; 2006 Oct; 443(7112):705-8. PubMed ID: 17036006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular calcium dependence of transmitter release rates at a fast central synapse.
    Schneggenburger R; Neher E
    Nature; 2000 Aug; 406(6798):889-93. PubMed ID: 10972290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.