These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 9862971)
1. Insertion of dGMP and dAMP during in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine. Duarte V; Muller JG; Burrows CJ Nucleic Acids Res; 1999 Jan; 27(2):496-502. PubMed ID: 9862971 [TBL] [Abstract][Full Text] [Related]
2. In vitro nucleotide misinsertion opposite the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin and DNA synthesis past the lesions using Escherichia coli DNA polymerase I (Klenow fragment). Kornyushyna O; Berges AM; Muller JG; Burrows CJ Biochemistry; 2002 Dec; 41(51):15304-14. PubMed ID: 12484769 [TBL] [Abstract][Full Text] [Related]
3. Substitution of Ala for Tyr567 in RB69 DNA polymerase allows dAMP and dGMP to be inserted opposite Guanidinohydantoin . Beckman J; Wang M; Blaha G; Wang J; Konigsberg WH Biochemistry; 2010 Oct; 49(39):8554-63. PubMed ID: 20795733 [TBL] [Abstract][Full Text] [Related]
4. Base sequence dependence of in vitro translesional DNA replication past a bulky lesion catalyzed by the exo- Klenow fragment of Pol I. Zhuang P; Kolbanovskiy A; Amin S; Geacintov NE Biochemistry; 2001 Jun; 40(22):6660-9. PubMed ID: 11380261 [TBL] [Abstract][Full Text] [Related]
5. Mutagenesis mechanism of the major oxidative adenine lesion 7,8-dihydro-8-oxoadenine. Koag MC; Jung H; Lee S Nucleic Acids Res; 2020 May; 48(9):5119-5134. PubMed ID: 32282906 [TBL] [Abstract][Full Text] [Related]
6. Promutagenic bypass of 7,8-dihydro-8-oxoadenine by translesion synthesis DNA polymerase Dpo4. Jung H; Lee S Biochem J; 2020 Aug; 477(15):2859-2871. PubMed ID: 32686822 [TBL] [Abstract][Full Text] [Related]
7. Misincorporation of dAMP opposite 2-hydroxyadenine, an oxidative form of adenine. Kamiya H; Ueda T; Ohgi T; Matsukage A; Kasai H Nucleic Acids Res; 1995 Mar; 23(5):761-6. PubMed ID: 7708490 [TBL] [Abstract][Full Text] [Related]
8. In vitro effects of a C4'-oxidized abasic site on DNA polymerases. Greenberg MM; Weledji YN; Kroeger KM; Kim J; Goodman MF Biochemistry; 2004 Mar; 43(9):2656-63. PubMed ID: 14992603 [TBL] [Abstract][Full Text] [Related]
9. Substitution of Ala for Tyr567 in RB69 DNA polymerase allows dAMP to be inserted opposite 7,8-dihydro-8-oxoguanine . Beckman J; Wang M; Blaha G; Wang J; Konigsberg WH Biochemistry; 2010 May; 49(19):4116-25. PubMed ID: 20411947 [TBL] [Abstract][Full Text] [Related]
10. Mutagenic Replication of the Major Oxidative Adenine Lesion 7,8-Dihydro-8-oxoadenine by Human DNA Polymerases. Koag MC; Jung H; Lee S J Am Chem Soc; 2019 Mar; 141(11):4584-4596. PubMed ID: 30817143 [TBL] [Abstract][Full Text] [Related]
11. Oxidation of thymine to 5-formyluracil in DNA promotes misincorporation of dGMP and subsequent elongation of a mismatched primer terminus by DNA polymerase. Masaoka A; Terato H; Kobayashi M; Ohyama Y; Ide H J Biol Chem; 2001 May; 276(19):16501-10. PubMed ID: 11278425 [TBL] [Abstract][Full Text] [Related]
12. Translesional synthesis on DNA templates containing the 2'-deoxyribonolactone lesion. Berthet N; Roupioz Y; Constant JF; Kotera M; Lhomme J Nucleic Acids Res; 2001 Jul; 29(13):2725-32. PubMed ID: 11433017 [TBL] [Abstract][Full Text] [Related]
13. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2. Hailer MK; Slade PG; Martin BD; Rosenquist TA; Sugden KD DNA Repair (Amst); 2005 Jan; 4(1):41-50. PubMed ID: 15533836 [TBL] [Abstract][Full Text] [Related]
14. Repair and mutagenic potential of oxaluric acid, a major product of singlet oxygen-mediated oxidation of 8-oxo-7,8-dihydroguanine. Duarte V; Gasparutto D; Jaquinod M; Ravanat J; Cadet J Chem Res Toxicol; 2001 Jan; 14(1):46-53. PubMed ID: 11170507 [TBL] [Abstract][Full Text] [Related]
15. Molecular and structural characterization of oxidized ribonucleotide insertion into DNA by human DNA polymerase β. Smith MR; Alnajjar KS; Hoitsma NM; Sweasy JB; Freudenthal BD J Biol Chem; 2020 Feb; 295(6):1613-1622. PubMed ID: 31892517 [TBL] [Abstract][Full Text] [Related]
16. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases. Einolf HJ; Schnetz-Boutaud N; Guengerich FP Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338 [TBL] [Abstract][Full Text] [Related]
17. Misincorporation of dNTPs opposite 1,N2-ethenoguanine and 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine in oligonucleotides by Escherichia coli polymerases I exo- and II exo-, T7 polymerase exo-, human immunodeficiency virus-1 reverse transcriptase, and rat polymerase beta. Langouët S; Müller M; Guengerich FP Biochemistry; 1997 May; 36(20):6069-79. PubMed ID: 9166777 [TBL] [Abstract][Full Text] [Related]
18. Real-time surface plasmon resonance study of biomolecular interactions between polymerase and bulky mutagenic DNA lesions. Xu L; Vaidyanathan VG; Cho BP Chem Res Toxicol; 2014 Oct; 27(10):1796-807. PubMed ID: 25195494 [TBL] [Abstract][Full Text] [Related]
19. Mutagenesis of 8-oxoguanine adjacent to an abasic site in simian kidney cells: tandem mutations and enhancement of G-->T transversions. Kalam MA; Basu AK Chem Res Toxicol; 2005 Aug; 18(8):1187-92. PubMed ID: 16097791 [TBL] [Abstract][Full Text] [Related]
20. Role of base stacking and sequence context in the inhibition of yeast DNA polymerase eta by pyrene nucleotide. Hwang H; Taylor JS Biochemistry; 2004 Nov; 43(46):14612-23. PubMed ID: 15544332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]