BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

848 related articles for article (PubMed ID: 9863528)

  • 21. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration.
    Hadlock T; Sundback C; Hunter D; Cheney M; Vacanti JP
    Tissue Eng; 2000 Apr; 6(2):119-27. PubMed ID: 10941207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation.
    Mo X; Weber HJ; Ramakrishna S
    Int J Artif Organs; 2006 Aug; 29(8):790-9. PubMed ID: 16969757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage.
    Tanaka Y; Yamaoka H; Nishizawa S; Nagata S; Ogasawara T; Asawa Y; Fujihara Y; Takato T; Hoshi K
    Biomaterials; 2010 Jun; 31(16):4506-16. PubMed ID: 20206380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L
    Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Injectable PLGA microsphere/calcium phosphate cements: physical properties and degradation characteristics.
    Habraken WJ; Wolke JG; Mikos AG; Jansen JA
    J Biomater Sci Polym Ed; 2006; 17(9):1057-74. PubMed ID: 17094642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds.
    Yang F; Qu X; Cui W; Bei J; Yu F; Lu S; Wang S
    Biomaterials; 2006 Oct; 27(28):4923-33. PubMed ID: 16759695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early stage foreign body reaction against biodegradable polymer scaffolds affects tissue regeneration during the autologous transplantation of tissue-engineered cartilage in the canine model.
    Asawa Y; Sakamoto T; Komura M; Watanabe M; Nishizawa S; Takazawa Y; Takato T; Hoshi K
    Cell Transplant; 2012; 21(7):1431-42. PubMed ID: 22546666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo characterisation of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications.
    Day RM; Boccaccini AR; Maquet V; Shurey S; Forbes A; Gabe SM; Jérôme R
    J Mater Sci Mater Med; 2004 Jun; 15(6):729-34. PubMed ID: 15346742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers.
    Jackson JK; Hung T; Letchford K; Burt HM
    Int J Pharm; 2007 Sep; 342(1-2):6-17. PubMed ID: 17555895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro.
    Liao S; Watari F; Zhu Y; Uo M; Akasaka T; Wang W; Xu G; Cui F
    Dent Mater; 2007 Sep; 23(9):1120-8. PubMed ID: 17095082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyester based nerve guidance conduit design.
    Yucel D; Kose GT; Hasirci V
    Biomaterials; 2010 Mar; 31(7):1596-603. PubMed ID: 19932504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts.
    Yoon JJ; Park TG
    J Biomed Mater Res; 2001 Jun; 55(3):401-8. PubMed ID: 11255194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration.
    Liao S; Wang W; Uo M; Ohkawa S; Akasaka T; Tamura K; Cui F; Watari F
    Biomaterials; 2005 Dec; 26(36):7564-71. PubMed ID: 16005963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination.
    Giunchedi P; Conti B; Scalia S; Conte U
    J Control Release; 1998 Dec; 56(1-3):53-62. PubMed ID: 9801429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS).
    Ghaderi R; Artursson P; Carlfors J
    Pharm Res; 1999 May; 16(5):676-81. PubMed ID: 10350010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of fibrous biodegradable polymer conduits for guided nerve regeneration.
    Bini TB; Gao S; Wang S; Ramakrishna S
    J Mater Sci Mater Med; 2005 Apr; 16(4):367-75. PubMed ID: 15803283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conjugation of drug to poly(D,L-lactic-co-glycolic acid) for controlled release from biodegradable microspheres.
    Oh JE; Nam YS; Lee KH; Park TG
    J Control Release; 1999 Feb; 57(3):269-80. PubMed ID: 9895414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA composites.
    Durucan C; Brown PW
    J Biomed Mater Res; 2000 Sep; 51(4):717-25. PubMed ID: 10880121
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of additives on the release profile of nifedipine from poly(DL-lactide-co-glycolide) microspheres.
    Sansdrap P; Moës AJ
    J Microencapsul; 1998; 15(5):545-53. PubMed ID: 9743911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.