These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 986426)
1. Reutilization of by-product for riboflavin formation in the riboflavin synthetase reaction. Mitsuda H; Nadamoto T; Nakajima K J Nutr Sci Vitaminol (Tokyo); 1976; 22(1):67-70. PubMed ID: 986426 [No Abstract] [Full Text] [Related]
2. Riboflavin synthetase from Eremothecium ashbyii and a salvage pathway of the by-product in the enzyme reaction. Mitsuda H; Nakajima K; Nadamoto T; Yamada Y Methods Enzymol; 1980; 66():307-23. PubMed ID: 6768961 [No Abstract] [Full Text] [Related]
3. Identification of the second product of the riboflavin synthetase reaction. Mitsuda H; Nadamoto T; Nakajima K J Nutr Sci Vitaminol (Tokyo); 1976; 22(5):381-7. PubMed ID: 1034674 [TBL] [Abstract][Full Text] [Related]
4. Studies on the intermediates in the biosynthetic pathway of riboflavin. I. Identification of a green fluorescent compound, compound G1, accumulated in non-growing cells of Eremothecium ashbyii by the addition of dimeric diacetyl. Mitsuda H; Nakajima K; Yamada Y J Nutr Sci Vitaminol (Tokyo); 1977; 23(4):305-18. PubMed ID: 562396 [No Abstract] [Full Text] [Related]
5. Catalytic properties of riboflavin synthetase from a high-riboflavinogenic Eremothecium ashbyii. Suzuki Y; Nishikawa Y; Mitsuda H J Nutr Sci Vitaminol (Tokyo); 1974; 20(4):301-16. PubMed ID: 4612121 [No Abstract] [Full Text] [Related]
6. Biosynthesis of riboflavin. Enzymatic formation of 6,7-dimethyl-8-ribityllumazine by heavy riboflavin synthase from Bacillus subtilis. Neuberger G; Bacher A Biochem Biophys Res Commun; 1986 Sep; 139(3):1111-6. PubMed ID: 3094525 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of riboflavin. 6,7-Dimethyl-8-ribityllumazine 5'-phosphate is not a substrate for riboflavin synthase. Harzer G; Rokos H; Otto MK; Bacher A; Ghisla S Biochim Biophys Acta; 1978 Apr; 540(1):48-54. PubMed ID: 416855 [TBL] [Abstract][Full Text] [Related]
8. [Nature of riboflavin precursors in Pichia guilliermondi yeasts]. Logvinenko EM; Shavlovskiĭ GM; Koltun LV; Ksheminskaia GP Mikrobiologiia; 1975; 44(1):48-54. PubMed ID: 1160636 [TBL] [Abstract][Full Text] [Related]
9. Examination of the structure of an unknown green fluorescent compound, compound G2, accumulated in non-growing cells of Eremothecium ashbyii by the addition of dimeric diacetyl. Mitsuda H; Nakajima K; Yamada Y J Nutr Sci Vitaminol (Tokyo); 1977; 23(5):413-22. PubMed ID: 564400 [TBL] [Abstract][Full Text] [Related]
10. Biosynthesis of riboflavin in Bacillus subtilis: function and genetic control of the riboflavin synthase complex. Bacher A; Mailänder B J Bacteriol; 1978 May; 134(2):476-82. PubMed ID: 96090 [TBL] [Abstract][Full Text] [Related]
11. Substrate channeling in the lumazine synthase/riboflavin synthase complex of Bacillus subtilis. Kis K; Bacher A J Biol Chem; 1995 Jul; 270(28):16788-95. PubMed ID: 7622491 [TBL] [Abstract][Full Text] [Related]
12. A pentacyclic reaction intermediate of riboflavin synthase. Illarionov B; Eisenreich W; Bacher A Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7224-9. PubMed ID: 11404482 [TBL] [Abstract][Full Text] [Related]
13. Possibility of diacetyl and related compounds as the 4-carbon compound necessary for the formation of riboflavin in Ashbya gossypii. Nakajima K; Mitsuda H Acta Vitaminol Enzymol; 1984; 6(4):271-82. PubMed ID: 6534171 [TBL] [Abstract][Full Text] [Related]
14. [Changes in the enzyme activity of flavinogenesis in the process of culturing the fungus Eremothecium ashbyii]. Koltun LV; Shavlovskiĭ GM; Kashchenko VE; Trach VM Mikrobiologiia; 1984; 53(1):43-7. PubMed ID: 6323931 [TBL] [Abstract][Full Text] [Related]
15. Biosynthesis of riboflavin: reductase and deaminase of Ashbya gossypii. Hollander I; Brown GM Biochem Biophys Res Commun; 1979 Jul; 89(2):759-63. PubMed ID: 39563 [No Abstract] [Full Text] [Related]
16. [Regulation of the activity and synthesis of enzymes participating in the formation of 6,7-dimethyl-8-ribityllumazine, a riboflavin precursor in yeast]. Logvinenko EM; Shavlovskiĭ GM; Zakal'skiĭ AE; Samarskiĭ VA Ukr Biokhim Zh (1978); 1989; 61(1):28-32. PubMed ID: 2741238 [TBL] [Abstract][Full Text] [Related]
17. Isolation and identification of green fluorescent compound accumulated in non-growing cells of Eremothecium ashbyii by the addition of glyoxal. Mitsuda H; Nakajima K; Yamada Y J Nutr Sci Vitaminol (Tokyo); 1978; 24(2):113-22. PubMed ID: 566787 [TBL] [Abstract][Full Text] [Related]
18. Studies on the 4-carbon compound needed for the formation of the O-xylene ring of riboflavin. Nakajima K Acta Vitaminol Enzymol; 1985; 7(1-2):25-37. PubMed ID: 4041123 [TBL] [Abstract][Full Text] [Related]
19. Ligand-binding studies on light riboflavin synthase from Bacillus subtilis. Otto MK; Bacher A Eur J Biochem; 1981 Apr; 115(3):511-7. PubMed ID: 6786884 [TBL] [Abstract][Full Text] [Related]
20. An inducible riboflavin synthetase from a pseudomonad. Basu SK; Roy SC Folia Microbiol (Praha); 1975; 20(2):118-23. PubMed ID: 809323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]