These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9864336)

  • 1. A membrane-bound NAD(P)+-reducing hydrogenase provides reduced pyridine nucleotides during citrate fermentation by Klebsiella pneumoniae.
    Steuber J; Krebs W; Bott M; Dimroth P
    J Bacteriol; 1999 Jan; 181(1):241-5. PubMed ID: 9864336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADH formation by Na(+)-coupled reversed electron transfer in Klebsiella pneumoniae.
    Pfenninger-Li XD; Dimroth P
    Mol Microbiol; 1992 Jul; 6(14):1943-8. PubMed ID: 1508043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH:quinone oxidoreductase of Klebsiella pneumoniae.
    Dimroth P; Thomer A
    Arch Microbiol; 1989; 151(5):439-44. PubMed ID: 2545175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen control of nif gene expression in Klebsiella pneumoniae depends on NifL reduction at the cytoplasmic membrane by electrons derived from the reduced quinone pool.
    Grabbe R; Schmitz RA
    Eur J Biochem; 2003 Apr; 270(7):1555-66. PubMed ID: 12654011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy Conservation Associated with Ethanol Formation from H2 and CO2 in Clostridium autoethanogenum Involving Electron Bifurcation.
    Mock J; Zheng Y; Mueller AP; Ly S; Tran L; Segovia S; Nagaraju S; Köpke M; Dürre P; Thauer RK
    J Bacteriol; 2015 Sep; 197(18):2965-80. PubMed ID: 26148714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen formation and its regulation in Ruminococcus albus: involvement of an electron-bifurcating [FeFe]-hydrogenase, of a non-electron-bifurcating [FeFe]-hydrogenase, and of a putative hydrogen-sensing [FeFe]-hydrogenase.
    Zheng Y; Kahnt J; Kwon IH; Mackie RI; Thauer RK
    J Bacteriol; 2014 Nov; 196(22):3840-52. PubMed ID: 25157086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+ translocation by the NADH:ubiquinone oxidoreductase (complex I) from Klebsiella pneumoniae.
    Krebs W; Steuber J; Gemperli AC; Dimroth P
    Mol Microbiol; 1999 Aug; 33(3):590-8. PubMed ID: 10417649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen evolution by strictly aerobic hydrogen bacteria under anaerobic conditions.
    Kuhn M; Steinbüchel A; Schlegel HG
    J Bacteriol; 1984 Aug; 159(2):633-9. PubMed ID: 6378884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of formate and hydrogen, and flux of reducing equivalents and carbon in Ruminococcus flavefaciens FD-1.
    Shi Y; Weimer PJ; Ralph J
    Antonie Van Leeuwenhoek; 1997 Aug; 72(2):101-9. PubMed ID: 9298188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the citrate/acetate antiporter CitW of Klebsiella pneumoniae.
    Kästner CN; Schneider K; Dimroth P; Pos KM
    Arch Microbiol; 2002 Jun; 177(6):500-6. PubMed ID: 12029396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic citrate metabolism and its regulation in enterobacteria.
    Bott M
    Arch Microbiol; 1997; 167(2-3):78-88. PubMed ID: 9133329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri.
    Meuer J; Bartoschek S; Koch J; Künkel A; Hedderich R
    Eur J Biochem; 1999 Oct; 265(1):325-35. PubMed ID: 10491189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Citrate transport in Klebsiella pneumoniae.
    Dimroth P; Thomer A
    Biol Chem Hoppe Seyler; 1986 Aug; 367(8):813-23. PubMed ID: 2945569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the culture media optimization, pH and temperature on the biohydrogen production and the hydrogenase activities by Klebsiella pneumoniae ECU-15.
    Xiao Y; Zhang X; Zhu M; Tan W
    Bioresour Technol; 2013 Jun; 137():9-17. PubMed ID: 23584405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The proton-translocating nicotinamide-adenine dinucleotide (phosphate) transhydrogenase of rat liver mitochondria.
    Moyle J; Mitchell P
    Biochem J; 1973 Mar; 132(3):571-85. PubMed ID: 4146799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical studies of Klebsiella pneumoniae NifL reduction using reconstituted partial anaerobic respiratory chains of Wolinella succinogenes.
    Thummer R; Klimmek O; Schmitz RA
    J Biol Chem; 2007 Apr; 282(17):12517-26. PubMed ID: 17329251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolite repression of the citrate fermentation genes in Klebsiella pneumoniae: evidence for involvement of the cyclic AMP receptor protein.
    Meyer M; Dimroth P; Bott M
    J Bacteriol; 2001 Sep; 183(18):5248-56. PubMed ID: 11514506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Energy transformation coupled to formate oxidation during anaerobic fermentation].
    Akopian M; Poladian A; Bagramian K
    Biofizika; 2006; 51(3):466-71. PubMed ID: 16808345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of the enzymes involved in H2 and formate metabolism in Syntrophospora bryantii.
    Dong X; Stams AJ
    Antonie Van Leeuwenhoek; 1995; 67(4):345-50. PubMed ID: 7574550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of metabolic end-products on the growth efficiency of Klebsiella aerogenes in anaerobic chemostat culture.
    Teixeira de Mattos MJ; Plomp PJ; Neijssel OM; Tempest DW
    Antonie Van Leeuwenhoek; 1984; 50(5-6):461-72. PubMed ID: 6442120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.