These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 9864340)
1. Adaptation of Mycobacterium smegmatis to stationary phase. Smeulders MJ; Keer J; Speight RA; Williams HD J Bacteriol; 1999 Jan; 181(1):270-83. PubMed ID: 9864340 [TBL] [Abstract][Full Text] [Related]
2. Formation of 'non-culturable' cells of Mycobacterium smegmatis in stationary phase in response to growth under suboptimal conditions and their Rpf-mediated resuscitation. Shleeva M; Mukamolova GV; Young M; Williams HD; Kaprelyants AS Microbiology (Reading); 2004 Jun; 150(Pt 6):1687-1697. PubMed ID: 15184555 [TBL] [Abstract][Full Text] [Related]
3. A two-component regulator of universal stress protein expression and adaptation to oxygen starvation in Mycobacterium smegmatis. O'Toole R; Smeulders MJ; Blokpoel MC; Kay EJ; Lougheed K; Williams HD J Bacteriol; 2003 Mar; 185(5):1543-54. PubMed ID: 12591871 [TBL] [Abstract][Full Text] [Related]
4. Adaptation to nutrient starvation in Rhizobium leguminosarum bv. phaseoli: analysis of survival, stress resistance, and changes in macromolecular synthesis during entry to and exit from stationary phase. Thorne SH; Williams HD J Bacteriol; 1997 Nov; 179(22):6894-901. PubMed ID: 9371432 [TBL] [Abstract][Full Text] [Related]
5. Mutants of Mycobacterium smegmatis impaired in stationary-phase survival. Keer J; Smeulders MJ; Gray KM; Williams HD Microbiology (Reading); 2000 Sep; 146 ( Pt 9)():2209-2217. PubMed ID: 10974108 [TBL] [Abstract][Full Text] [Related]
6. A microfluidic system for long-term time-lapse microscopy studies of mycobacteria. Golchin SA; Stratford J; Curry RJ; McFadden J Tuberculosis (Edinb); 2012 Nov; 92(6):489-96. PubMed ID: 22954584 [TBL] [Abstract][Full Text] [Related]
7. Increased alanine dehydrogenase activity during dormancy in Mycobacterium smegmatis. Hutter B; Dick T FEMS Microbiol Lett; 1998 Oct; 167(1):7-11. PubMed ID: 9785446 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a Mycobacterium smegmatis uvrA mutant impaired in dormancy induced by hypoxia and low carbon concentration. Cordone A; Audrain B; Calabrese I; Euphrasie D; Reyrat JM BMC Microbiol; 2011 Oct; 11():231. PubMed ID: 22008214 [TBL] [Abstract][Full Text] [Related]
9. Global analysis of proteins synthesized by Mycobacterium smegmatis provides direct evidence for physiological heterogeneity in stationary-phase cultures. Blokpoel MC; Smeulders MJ; Hubbard JA; Keer J; Williams HD J Bacteriol; 2005 Oct; 187(19):6691-700. PubMed ID: 16166531 [TBL] [Abstract][Full Text] [Related]
10. Aggregation of Nontuberculous Mycobacteria Is Regulated by Carbon-Nitrogen Balance. DePas WH; Bergkessel M; Newman DK mBio; 2019 Aug; 10(4):. PubMed ID: 31409683 [TBL] [Abstract][Full Text] [Related]
11. A purF mutant of Mycobacterium smegmatis has impaired survival during oxygen-starved stationary phase. Keer J; Smeulders MJ; Williams HD Microbiology (Reading); 2001 Feb; 147(Pt 2):473-481. PubMed ID: 11158364 [TBL] [Abstract][Full Text] [Related]
12. mRNA Degradation Rates Are Coupled to Metabolic Status in Mycobacterium smegmatis. Vargas-Blanco DA; Zhou Y; Zamalloa LG; Antonelli T; Shell SS mBio; 2019 Jul; 10(4):. PubMed ID: 31266866 [TBL] [Abstract][Full Text] [Related]
13. Involvement of the Mycobacterium tuberculosis secreted antigen SA-5K in intracellular survival of recombinant Mycobacterium smegmatis. Batoni G; Bottai D; Maisetta G; Pardini M; Boschi A; Florio W; Esin S; Campa M FEMS Microbiol Lett; 2001 Nov; 205(1):125-9. PubMed ID: 11728726 [TBL] [Abstract][Full Text] [Related]
15. High intracellular level of guanosine tetraphosphate in Mycobacterium smegmatis changes the morphology of the bacterium. Ojha AK; Mukherjee TK; Chatterji D Infect Immun; 2000 Jul; 68(7):4084-91. PubMed ID: 10858225 [TBL] [Abstract][Full Text] [Related]
16. Role of Mycobacterium tuberculosis Ser/Thr kinase PknF: implications in glucose transport and cell division. Deol P; Vohra R; Saini AK; Singh A; Chandra H; Chopra P; Das TK; Tyagi AK; Singh Y J Bacteriol; 2005 May; 187(10):3415-20. PubMed ID: 15866927 [TBL] [Abstract][Full Text] [Related]
17. Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Compromised State. Patil V; Jain V J Bacteriol; 2019 Oct; 201(19):. PubMed ID: 31285242 [No Abstract] [Full Text] [Related]
18. High extracellular levels of Mycobacterium tuberculosis glutamine synthetase and superoxide dismutase in actively growing cultures are due to high expression and extracellular stability rather than to a protein-specific export mechanism. Tullius MV; Harth G; Horwitz MA Infect Immun; 2001 Oct; 69(10):6348-63. PubMed ID: 11553579 [TBL] [Abstract][Full Text] [Related]
19. Nudix hydrolases with Coenzyme A (CoA) and acyl-CoA pyrophosphatase activities confer growth advantage to Kapoor I; Varada R; Aroli S; Varshney U Microbiology (Reading); 2019 Nov; 165(11):1219-1232. PubMed ID: 31526453 [TBL] [Abstract][Full Text] [Related]
20. Identification of a novel gene product that promotes survival of Mycobacterium smegmatis in macrophages. Pelosi A; Smith D; Brammananth R; Topolska A; Billman-Jacobe H; Nagley P; Crellin PK; Coppel RL PLoS One; 2012; 7(2):e31788. PubMed ID: 22363734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]