These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9864468)

  • 1. Thermodynamic and stereochemical parameters to evaluate stability of hydrophobic cores of globular proteins.
    Trikulenko AV
    Biochemistry (Mosc); 1998 Nov; 63(11):1290-3. PubMed ID: 9864468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparative analysis of the structure and degree of stability of hydrophobic nuclei from certain globular proteins].
    Trikulenko AV
    Mol Biol (Mosk); 1996; 30(2):362-6. PubMed ID: 8724768
    [No Abstract]   [Full Text] [Related]  

  • 3. Role of hydrophobic interactions in protein chain folding during biosynthesis.
    Trikulenko AV
    Biochemistry (Mosc); 1998 May; 63(5):564-7. PubMed ID: 9632893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Characteristics of distribution of nonpolar amino acid residues in amino acid sequences of different groups of globular proteins].
    Trikulenko AV
    Biokhimiia; 1996 Mar; 61(3):461-3. PubMed ID: 8724604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A comparative analysis of the structure of the myoglobin, cytochrome b5, and alpha-chymotrypsin hydrophobic nuclei].
    Trikulenko AV
    Mol Biol (Mosk); 1991; 25(6):1576-9. PubMed ID: 1813802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the maximum change in stability of globular proteins upon mutation of a hydrophobic residue to another of smaller size.
    Lee B
    Protein Sci; 1993 May; 2(5):733-8. PubMed ID: 8495196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristic features of amino acid residues in coiled-coil protein structures.
    Gromiha MM; Parry DA
    Biophys Chem; 2004 Oct; 111(2):95-103. PubMed ID: 15381307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Native protein sequences are designed to destabilize folding intermediates.
    Isogai Y
    Biochemistry; 2006 Feb; 45(8):2488-92. PubMed ID: 16489741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic core fluidity of homologous protein domains: relation of side-chain dynamics to core composition and packing.
    Best RB; Rutherford TJ; Freund SM; Clarke J
    Biochemistry; 2004 Feb; 43(5):1145-55. PubMed ID: 14756550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atoms-in-molecules study of the genetically encoded amino acids. III. Bond and atomic properties and their correlations with experiment including mutation-induced changes in protein stability and genetic coding.
    Matta CF; Bader RF
    Proteins; 2003 Aug; 52(3):360-99. PubMed ID: 12866050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Position-dependent effects of fluorinated amino acids on the hydrophobic core formation of a heterodimeric coiled coil.
    Salwiczek M; Samsonov S; Vagt T; Nyakatura E; Fleige E; Numata J; Cölfen H; Pisabarro MT; Koksch B
    Chemistry; 2009 Aug; 15(31):7628-36. PubMed ID: 19579235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial profiling of protein hydrophobicity: native vs. decoy structures.
    Zhou R; Silverman BD; Royyuru AK; Athma P
    Proteins; 2003 Sep; 52(4):561-72. PubMed ID: 12910456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability scale and atomic solvation parameters extracted from 1023 mutation experiments.
    Zhou H; Zhou Y
    Proteins; 2002 Dec; 49(4):483-92. PubMed ID: 12402358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic analysis of thermal transitions in globular proteins. I. Calorimetric study of chymotrypsinogen, ribonuclease and myoglobin.
    Privalov PL; Khechinashvili NN; Atanasov BP
    Biopolymers; 1971 Oct; 10(10):1865-90. PubMed ID: 5110912
    [No Abstract]   [Full Text] [Related]  

  • 17. Solvent accessible surface area of amino acid residues in globular proteins: correlation of apparent transfer free energies with experimental hydrophobicity scales.
    Shaytan AK; Shaitan KV; Khokhlov AR
    Biomacromolecules; 2009 May; 10(5):1224-37. PubMed ID: 19334678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation studies of cytochrome b5 from outer mitochondrial and microsomal membrane.
    Lee KH; Kuczera K
    Biopolymers; 2003 Jun; 69(2):260-9. PubMed ID: 12767127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force.
    Shimizu S; Chan HS
    Proteins; 2002 Dec; 49(4):560-6. PubMed ID: 12402364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.