These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 9864751)

  • 21. Hot topics in motor control and learning: introduction. The dynamic systems approach to motor control and learning: promises, potential limitations, and future directions.
    Walter C; Lee TD; Sternad D
    Res Q Exerc Sport; 1998 Dec; 69(4):316-8. PubMed ID: 9864748
    [No Abstract]   [Full Text] [Related]  

  • 22. Effects of knowledge of results (KR) frequency in the learning of a timing skill: absolute versus relative KR frequency.
    Vieira MM; Ugrinowitsch H; Oliveira FS; Gallo LG; Benda RN
    Percept Mot Skills; 2012 Oct; 115(2):360-9. PubMed ID: 23265002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On discontinuities in motor learning: a longitudinal study of complex skill acquisition on a ski-simulator.
    Nourrit D; Delignières D; Caillou N; Deschamps T; Lauriot B
    J Mot Behav; 2003 Jun; 35(2):151-70. PubMed ID: 12711586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unifying practice schedules in the timescales of motor learning and performance.
    Verhoeven FM; Newell KM
    Hum Mov Sci; 2018 Jun; 59():153-169. PubMed ID: 29684760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning to combine high variability with high precision: lack of transfer to a different task.
    Wu YH; Truglio TS; Zatsiorsky VM; Latash ML
    J Mot Behav; 2015; 47(2):153-65. PubMed ID: 25365477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of contextual interference and age on acquisition, retention, and transfer of motor skill.
    Jarus T; Goverover Y
    Percept Mot Skills; 1999 Apr; 88(2):437-47. PubMed ID: 10483636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skill acquisition in sport: some applications of an evolving practice ecology.
    Handford C; Davids K; Bennett S; Button C
    J Sports Sci; 1997 Dec; 15(6):621-40. PubMed ID: 9486439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The contextual interference effect for skill variations from the same and different generalized motor programs.
    Sekiya H; Magill RA; Sidaway B; Anderson DI
    Res Q Exerc Sport; 1994 Dec; 65(4):330-8. PubMed ID: 7886282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Qualitative and quantitative change in the dynamics of motor learning.
    Liu YT; Mayer-Kress G; Newell KM
    J Exp Psychol Hum Percept Perform; 2006 Apr; 32(2):380-93. PubMed ID: 16634677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Limb Dominance and Its Effects on the Benefits of Intralimb Transfer of Learning: A Visuomotor Aiming Task.
    Aiken CA; Pan Z; Van Gemmert AW
    J Mot Behav; 2015; 47(6):509-21. PubMed ID: 25826199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How persistent and general is the contextual interference effect?
    Russell DM; Newell KM
    Res Q Exerc Sport; 2007 Sep; 78(4):318-27. PubMed ID: 17941536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Goal-directed imitation: the means to an end.
    Hayes SJ; Ashford D; Bennett SJ
    Acta Psychol (Amst); 2008 Feb; 127(2):407-15. PubMed ID: 17880901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Letter: A psychomotor "potential" in motor skill acquisition.
    Jones RE
    J Hum Ergol (Tokyo); 1974 Sep; 3(1):98-102. PubMed ID: 4465399
    [No Abstract]   [Full Text] [Related]  

  • 34. Feedback schedules for motor-skill learning: the similarities and differences between physical and observational practice.
    Badets A; Blandin Y
    J Mot Behav; 2010; 42(4):257-68. PubMed ID: 20862778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving novel motor learning through prior high contextual interference training.
    Kim T; Chen J; Verwey WB; Wright DL
    Acta Psychol (Amst); 2018 Jan; 182():55-64. PubMed ID: 29136517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conscious Control Is Associated With Freezing of Mechanical Degrees of Freedom During Motor Learning.
    van Ginneken WF; Poolton JM; Capio CM; van der Kamp J; Choi CSY; Masters RSW
    J Mot Behav; 2018; 50(4):436-456. PubMed ID: 28925825
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Task-specific internal models for kinematic transformations.
    Tong C; Flanagan JR
    J Neurophysiol; 2003 Aug; 90(2):578-85. PubMed ID: 12904486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning a new bimanual coordination pattern: interlimb interactions, attentional focus, and transfer.
    de Boer BJ; Peper CL; Beek PJ
    J Mot Behav; 2013; 45(1):65-77. PubMed ID: 23406196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Additive benefits of external focus and enhanced performance expectancy for motor learning.
    Pascua LA; Wulf G; Lewthwaite R
    J Sports Sci; 2015; 33(1):58-66. PubMed ID: 24875153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of Perceptual-Motor Behavior Across the Expert Athlete to Disabled Patient Skill Continuum can Advance Theory and Practical Application.
    Müller S; Vallence AM; Winstein C
    J Mot Behav; 2018; 50(6):697-707. PubMed ID: 29240533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.