BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 9865696)

  • 21. Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling.
    Souchelnytskyi S; Tamaki K; Engström U; Wernstedt C; ten Dijke P; Heldin CH
    J Biol Chem; 1997 Oct; 272(44):28107-15. PubMed ID: 9346966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA.
    Miura S; Takeshita T; Asao H; Kimura Y; Murata K; Sasaki Y; Hanai JI; Beppu H; Tsukazaki T; Wrana JL; Miyazono K; Sugamura K
    Mol Cell Biol; 2000 Dec; 20(24):9346-55. PubMed ID: 11094085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular signaling: Fleshing out the TGFbeta pathway.
    Padgett RW
    Curr Biol; 1999 Jun; 9(11):R408-11. PubMed ID: 10359694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta.
    Feng XH; Lin X; Derynck R
    EMBO J; 2000 Oct; 19(19):5178-93. PubMed ID: 11013220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ERBIN is a new SARA-interacting protein: competition between SARA and SMAD2 and SMAD3 for binding to ERBIN.
    Sflomos G; Kostaras E; Panopoulou E; Pappas N; Kyrkou A; Politou AS; Fotsis T; Murphy C
    J Cell Sci; 2011 Oct; 124(Pt 19):3209-22. PubMed ID: 21878490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Different Smad2 partners bind a common hydrophobic pocket in Smad2 via a defined proline-rich motif.
    Randall RA; Germain S; Inman GJ; Bates PA; Hill CS
    EMBO J; 2002 Jan; 21(1-2):145-56. PubMed ID: 11782434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Signaling through the Smad pathway by insulin-like growth factor-binding protein-3 in breast cancer cells. Relationship to transforming growth factor-beta 1 signaling.
    Fanayan S; Firth SM; Baxter RC
    J Biol Chem; 2002 Mar; 277(9):7255-61. PubMed ID: 11751851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two short segments of Smad3 are important for specific interaction of Smad3 with c-Ski and SnoN.
    Mizuide M; Hara T; Furuya T; Takeda M; Kusanagi K; Inada Y; Mori M; Imamura T; Miyazawa K; Miyazono K
    J Biol Chem; 2003 Jan; 278(1):531-6. PubMed ID: 12426322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The nuclear import function of Smad2 is masked by SARA and unmasked by TGFbeta-dependent phosphorylation.
    Xu L; Chen YG; Massagué J
    Nat Cell Biol; 2000 Aug; 2(8):559-62. PubMed ID: 10934479
    [No Abstract]   [Full Text] [Related]  

  • 30. Inhibition of transforming growth factor-beta1-induced signaling and epithelial-to-mesenchymal transition by the Smad-binding peptide aptamer Trx-SARA.
    Zhao BM; Hoffmann FM
    Mol Biol Cell; 2006 Sep; 17(9):3819-31. PubMed ID: 16775010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional conservation of Schistosoma mansoni Smads in TGF-beta signaling.
    Beall MJ; McGonigle S; Pearce EJ
    Mol Biochem Parasitol; 2000 Nov; 111(1):131-42. PubMed ID: 11087923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. aPKC alters the TGFβ response in NSCLC cells through both Smad-dependent and Smad-independent pathways.
    Gunaratne A; Chan E; El-Chabib TH; Carter D; Di Guglielmo GM
    J Cell Sci; 2015 Feb; 128(3):487–98. PubMed ID: 25501807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The adaptor molecule Disabled-2 links the transforming growth factor beta receptors to the Smad pathway.
    Hocevar BA; Smine A; Xu XX; Howe PH
    EMBO J; 2001 Jun; 20(11):2789-801. PubMed ID: 11387212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Internalization-dependent and -independent requirements for transforming growth factor beta receptor signaling via the Smad pathway.
    Penheiter SG; Mitchell H; Garamszegi N; Edens M; Doré JJ; Leof EB
    Mol Cell Biol; 2002 Jul; 22(13):4750-9. PubMed ID: 12052882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b.
    Seoane J; Pouponnot C; Staller P; Schader M; Eilers M; Massagué J
    Nat Cell Biol; 2001 Apr; 3(4):400-8. PubMed ID: 11283614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.
    Pierreux CE; Nicolás FJ; Hill CS
    Mol Cell Biol; 2000 Dec; 20(23):9041-54. PubMed ID: 11074002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor.
    Kuratomi G; Komuro A; Goto K; Shinozaki M; Miyazawa K; Miyazono K; Imamura T
    Biochem J; 2005 Mar; 386(Pt 3):461-70. PubMed ID: 15496141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SMURF2 and SMAD7 induce SARA degradation via the proteasome.
    Wojtowicz S; Lee S; Chan E; Ng E; Campbell CI; Di Guglielmo GM
    Cell Signal; 2020 Aug; 72():109627. PubMed ID: 32283253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective inhibition of activin receptor-like kinase 5 signaling blocks profibrotic transforming growth factor beta responses in skin fibroblasts.
    Mori Y; Ishida W; Bhattacharyya S; Li Y; Platanias LC; Varga J
    Arthritis Rheum; 2004 Dec; 50(12):4008-21. PubMed ID: 15593186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determinants of specificity in TGF-beta signal transduction.
    Chen YG; Hata A; Lo RS; Wotton D; Shi Y; Pavletich N; Massagué J
    Genes Dev; 1998 Jul; 12(14):2144-52. PubMed ID: 9679059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.