These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 986608)

  • 21. Structure and function of the two heads of the myosin molecule. IV. Physiological functions of various reaction intermediates in myosin adenosinetriphosphatase, studied by the interaction between actomyosin and 8-bromoadenosine triphosphate.
    Takenaka H; Ikehara M; Tonomura Y
    J Biochem; 1976 Dec; 80(6):1381-92. PubMed ID: 138680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical transients initiated by photolysis of caged ATP within fibers of insect fibrillar flight muscle.
    Yamakawa M; Goldman YE
    J Gen Physiol; 1991 Oct; 98(4):657-79. PubMed ID: 1960528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphate release and force generation in skeletal muscle fibers.
    Hibberd MG; Dantzig JA; Trentham DR; Goldman YE
    Science; 1985 Jun; 228(4705):1317-9. PubMed ID: 3159090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature.
    Nocella M; Cecchi G; Colombini B
    J Physiol; 2017 Jul; 595(13):4317-4328. PubMed ID: 28332714
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The elementary steps of the actomyosin ATPase in muscle fibres studied with caged-ATP.
    Ferenczi MA; Spencer CI
    Adv Exp Med Biol; 1988; 226():181-8. PubMed ID: 2970206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the myosin and actomyosin ATPase mechanisms of the four types of vertebrate muscles.
    Marston SB; Taylor EW
    J Mol Biol; 1980 Jun; 139(4):573-600. PubMed ID: 6447797
    [No Abstract]   [Full Text] [Related]  

  • 27. The effects of fibre length and calcium ion concentration on the dynamic response of glycerol extracted insect fibrillar muscle.
    Abbott RH
    J Physiol; 1973 Jun; 231(2):195-208. PubMed ID: 4720933
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP utilization for calcium uptake and force production in skinned muscle fibres of Xenopus laevis.
    Stienen GJ; Zaremba R; Elzinga G
    J Physiol; 1995 Jan; 482 ( Pt 1)(Pt 1):109-22. PubMed ID: 7730976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electric dipole theory and thermodynamics of actomyosin molecular motor in muscle contraction.
    Lampinen MJ; Noponen T
    J Theor Biol; 2005 Oct; 236(4):397-421. PubMed ID: 15919094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of a calcium-binding gluten fraction on the superprecipitation of actomyosin.
    Szabolcs M; Csabina S; Francia I; Csorba S
    Acta Paediatr Hung; 1986; 27(3):239-46. PubMed ID: 2946305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscle force and stiffness during activation and relaxation. Implications for the actomyosin ATPase.
    Brozovich FV; Yates LD; Gordon AM
    J Gen Physiol; 1988 Mar; 91(3):399-420. PubMed ID: 2967885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The incorporation of radioactive phosphate into ATP in glycerinated fibres stretched or released during contraction.
    Gillis JM; Maréchal G
    J Mechanochem Cell Motil; 1974; 3(1):55-68. PubMed ID: 4457581
    [No Abstract]   [Full Text] [Related]  

  • 33. Force and ATPase rate in skinned skeletal muscle fibers.
    Kushmerick MJ; Krasner B
    Fed Proc; 1982 May; 41(7):2232-7. PubMed ID: 6210577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adenosine diphosphate effect on contractility of human muscle actomyosin: inhibition by ethanol and acetaldehyde.
    Puszkin S; Rubin E
    Science; 1975 Jun; 188(4195):1319-20. PubMed ID: 124949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-bridge kinetics, cooperativity, and negatively strained cross-bridges in vertebrate smooth muscle. A laser-flash photolysis study.
    Somlyo AV; Goldman YE; Fujimori T; Bond M; Trentham DR; Somlyo AP
    J Gen Physiol; 1988 Feb; 91(2):165-92. PubMed ID: 3373178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substrate-concentration dependence of contraction parameters in glycerinated insect flight muscle fibers from Lethocerus derollei.
    Chaen S; Shimizu H
    J Biochem; 1984 Mar; 95(3):839-45. PubMed ID: 6609922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy state and myosin heavy chain isoforms in single fibres of normal and transforming rabbit muscles.
    Conjard A; Peuker H; Pette D
    Pflugers Arch; 1998 Nov; 436(6):962-9. PubMed ID: 9799414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibers.
    Kawai M; Zhao Y
    Biophys J; 1993 Aug; 65(2):638-51. PubMed ID: 8218893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphate exchange between high-energy phosphate compounds in resting crustacean muscle.
    Alvarez R; Luxoro M; Nassar-Gentina V; Szklarz G
    Q J Exp Physiol Cogn Med Sci; 1980 Jul; 65(3):199-205. PubMed ID: 6902967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ATP utilization and provision in fast-twitch skeletal muscle during tetanic contractions.
    Spriet LL
    Am J Physiol; 1989 Oct; 257(4 Pt 1):E595-605. PubMed ID: 2801938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.